
This article was downloaded by: [York University Libraries]
On: 12 August 2014, At: 17:16
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Statistics: A Journal of Theoretical and
Applied Statistics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gsta20

A doubly skewed normal distribution
Barry C. Arnolda, Héctor W. Gómezb & Hugo S. Salinasc

a Statistics Department, University of California, Riverside, CA,
USA
b Departamento de Matemáticas, Facultad de Ciencias Básicas,
Universidad de Antofagasta, Antofagasta, Chile
c Departamento de Matemática, Facultad de Ingeniería,
Universidad de Atacama, Atacama, Chile
Published online: 29 May 2014.

To cite this article: Barry C. Arnold, Héctor W. Gómez & Hugo S. Salinas (2014): A doubly
skewed normal distribution, Statistics: A Journal of Theoretical and Applied Statistics, DOI:
10.1080/02331888.2014.918618

To link to this article:  http://dx.doi.org/10.1080/02331888.2014.918618

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gsta20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331888.2014.918618
http://dx.doi.org/10.1080/02331888.2014.918618


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

Y
or

k 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

7:
16

 1
2 

A
ug

us
t 2

01
4 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Statistics, 2014
http://dx.doi.org/10.1080/02331888.2014.918618

A doubly skewed normal distribution

Barry C. Arnolda, Héctor W. Gómezb∗ and Hugo S. Salinasc

aStatistics Department, University of California, Riverside, CA, USA; bDepartamento de Matemáticas,
Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile; cDepartamento de

Matemática, Facultad de Ingeniería, Universidad de Atacama, Atacama, Chile

(Received 2 January 2012; accepted 23 December 2013)

We consider a distribution obtained by combining two well-known mechanisms for generating skewed
distributions. In this manner we arrive at a flexible model which subsumes and extends several skew
distributions which have been discussed in the literature. One approach to the problem of generating
skewed distributions was first popularized by Azzalini [A class of distributions which includes the normal
ones. Scand J Stat. 1985;12:171–178]. The single constraint skew normal distribution that was studied by
Azzalini is of the form

fSN(x) = 2φ(x)�(αx),

where φ and � denote, respectively, the standard normal density and distribution function and α ∈ R is
a skewing parameter. Multiple constraint variations of this distribution have also been considered. The
second skewing approach that we will consider was proposed by Mudholkar and Hutson [The epsilon-
skew-normal distribution for analyzing near-normal data. J Statist Plann Inference. 2000;83:291–309]
and called an epsilon-skew-normal distribution. The combination of an Azzalini mechanism with that of
Mudholkar and Hutson is investigated in this paper with special focus on the distributions obtained using
the standard normal as the base distribution. The resulting flexible model includes both unimodal and
bimodal cases and can be expected to fit a wider variety of data configurations than either of the models
involving a single skewing mechanism. Distributional and inferential properties of the doubly skewed
model are discussed and the model is used to obtain improved fits to two well-known data sets.

Keywords: epsilon-skew-normal; two-piece skew-normal; skew-normal distribution; doubly skewed

1. Introduction

Beginning with a base density f (x) and a given distribution function G(x), a skewed version of
the density f of the Azzalini type [1] will be of the form

fA(x) ∝ f (x)G(αx). (1)

Multiple constraint versions of this construction will involve k skewing distribution functions
instead of just one and will be of the form

fMA(x) ∝ f (x)
k∏

j=1

Gj(ψj(x)). (2)

in which the Gj’s are distribution functions and the ψj’s are usually simple functions, often linear.

∗Corresponding author. Email: hector.gomez@uantof.cl
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2 B.C. Arnold et al.

Examples of this genre which have appeared in the literature include:

(i) The multiple linear constraint normal model [2]:

f (x) ∝ φ(x)
k∏

j=1

�(α0j + α1jx) (3)

in which and throughout the rest of this paper φ and � denote, respectively, the standard
normal density and distribution function.

(ii) The two piece normal (TN) distribution [3]:

fTN(x) = cαφ(x)�(α|x|). (4)

(iii) The extended two piece normal (ETN) distribution [4]:

fETN(x) = 2cαφ(x)�(α|x|)�(βx). (5)

In (ii) and (iii), the normalizing constant (to guarantee the density integrates to 1) is explicitly
available. Specifically

cα = 2π

π + 2 arctan(α)
. (6)

This is unusual. More typically, in multiple constraint models, the normalizing constant must be
evaluated by numerical integration for any specific set of parameter values.

An alternative skewing mechanism was proposed by Mudholkar and Hutson.[5] Using their
approach, the epsilon skewed version of a base density f (x) is of the form:

fε(x) = f (x/(1 + ε))I(x < 0)+ f (x/(1 − ε))I(x ≥ 0)

1 − ε(1 − 2F(0))
. (7)

where −1 < ε < 1 is the skewing parameter, I(B) is the indicator function of the set B, and F
is the distribution function corresponding to the density f . If, as in the normal case studied by
Mudholkar and Hutson, the base density is symmetric, or less stringently if F(0) = 1/2, then the
denominator in Equation (7) reduces to 1 and can be eliminated. In particular, if f = φ we have
the epsilon-skew normal (ESN) density

fESN(x; ε) = φ

(
x

1 + ε

)
I(x < 0)+ φ

(
x

1 − ε

)
I(x ≥ 0). (8)

This is the specific model introduced by Mudholkar and Hutson. Subsequently Arellano-Valle
et al. [6] discuss the more general case in which the base density is an arbitrary symmetric density.
In particular, they focused on the case in which the base density was a symmetric exponential
power density (i.e. f (x) ∝ exp(|x|γ ).

To indicate that a random variable X has density fESN we will write X ∼ ESN(ε). Likewise,
if we write X ∼ A(α) we mean that X has fA (defined in Equation (1)) as its density. The same
convention is used for other subscripted densities introduced in the paper. To indicate that a base
density f is symmetric about 0, we will append a subscript 0, thus f0 will denote a generic density
that is symmetric about 0. Likewise, to indicate that a distribution function G is symmetric (i.e.
that G(x)+ G(−x) = 1), we append a subscript 0, thus G0.

The focus of the present paper is the study of the distribution obtained by applying both kinds
of skewing mechanisms (the multiple constraint mechanism and the epsilon skewing mecha-
nism) to the same base density. In particular we study the epsilon skewed version of the ETN
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Statistics 3

density. Thus our base density is standard normal. The use of alternative base densities can be
envisioned, but there are computational advantages associated with the normal density leading to
more attractive expressions; for example the normalizing constant for the doubly skewed normal
density is available in explicit form. Discussion of models obtained by applying more than one
skewing mechanism to a non-normal base density will be deferred to a separate report.

The resulting distribution can be viewed as an extension of the epsilon skew normal model.
In an earlier report Arellano-Valle et al. [7] discussed a different extension of the epsilon skew
normal model. To avoid the possible confusion associated with two distinct extended epsilon
skew normal models, and to emphasize the fact that the present models involve two skewing
mechanisms, we will speak of them as being doubly skewed normal models (rather than extended
epsilon skew normal models). As will be seen, the doubly skewed models add considerable
flexibility since they include bimodal as well as unimodal cases.

The paper is organized as follows. Section 2 includes general discussion of double skewing.
In Section 3, we develop the doubly skewed normal model and provide graphs of representative
densities together with discussion of basic properties and the relationship of the doubly skewed
normal model to other skew normal models which it includes and extends. In Section 4, distri-
butional properties of a restricted but still flexible sub-model are investigated in detail. For this
sub-model maximum likelihood estimation (MLE) is discussed and the corresponding Fisher
information matrix is derived in Section 5. Application of the sub-model to two particular data
sets is the subject of Section 6. Some details have been deferred to the appendix.

2. Doubly skewed models

Begin with a base density function f . The corresponding multiple constraint Azzalini-type
skewed density is of the form:

fMA(x; θ) = C(θ)f (x)
k∏

j=1

Gj(ψj(x); θj). (9)

where

C(θ)−1 =
∫ ∞

−∞
f (x)

k∏
j=1

Gj(ψj(x); θj) dx.

Typically the normalizing constant C(θ) will need to be evaluated by numerical integration,
although in some special cases it can be evaluated analytically. The corresponding distribution
function will be denoted by FMA(x; θ).

The corresponding doubly skewed model, obtained by applying ε-skewing to the skewed
model (9) is then of the form

fDS(x; ε, θ) = C(θ)

[
fMA(x/(1 + ε); θ)I(x < 0)+ fMA(x/(1 − ε); θ)I(x ≥ 0)

1 − ε(1 − 2FMA(0; θ))

]
. (10)

Considerable simplification of this expression is possible in the single constraint case when
ψ1(x) = x and both f and G are symmetric. Thus, using α as the Azzalini skewing parameter,
the doubly skewed model is given by

fDS(x; ε,α) = 2

f0(x/(1 + ε))G0(α(x/(1 + ε))) I(x < 0)
+f0(x/(1 − ε))G0(α(x/(1 − ε)))I(x ≥ 0)

1 − ε(1 − 2F0(0;α))
. (11)

where F0(0;α) = 2
∫ 0
−∞ f0(x)G0(αx) dx.
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4 B.C. Arnold et al.

As will be described in the next section, if f = φ and G = � it is sometimes possible to
identify precisely the form of the normalizing constant.

3. The doubly skewed normal distribution

The purpose of the present section is to introduce what we call the doubly skewed normal density
which can be viewed as a uni/bimodal extension of the epsilon-skew-normal density obtained
by replacing the density to be epsilon-skewed by an already skewed density. Such an extension is
potentially relevant for practical applications, because there are far fewer distributions available
for dealing with bimodal data than in the unimodal case.

3.1. The family of doubly skewed normal densities

The base density will be standard normal. After applying a particular two constraint Azzalini-
type skewing mechanism, we arrive at the extended two piece normal distribution introduced by
Arnold et al.[4]

fETN(x) = 2cαφ(x)�(α|x|)�(βx).

In this case the normalizing constant, cα , is explicitly available in the form

cα = 2π

π + 2 arctan(α)
.

Upon applying the ε-skewing mechanism, the following density, called the doubly skewed
normal (DSN) density, is obtained.

fDSN(x; ε,α,β)

= 2cα

⎡
⎢⎢⎣
φ(x/(1 + ε))�(α|x/(1 + ε)|)�(βx/(1 + ε))I(x < 0)

+φ(x/(1 − ε))�(α|x/(1 − ε)|)�(βx/(1 − ε))I(x ≥ 0)

1 − ε(1 − 2dα,β)

⎤
⎥⎥⎦ . (12)

where

dα,β = F(0;α,β) =
∫ 0

−∞
2cαφ(x)�(α|x|)�(βx) dx.

There is not an available analytic expression for the quantity dα,β and it will be necessary
to evaluate it numerically for given values of α and β. This will create some inconvenience
when, for example, maximum likelihood estimates are to be computed; but not insurmountable
inconveniences. The shapes of the density (12) for different parameter values are displayed in
Figure 1.

There exists a possibility of singularity of the Fisher information matrix with the DSN model.
Such is the case for certain well-known submodels, such as the Azzalini skew-normal model.
One possible approach to avoid singularity is to consider power-models as in [8]. The possibility
exists of extending the results to more robust models (see, for example, Gómez et al. [9]). This
will be the subject of a separate report.

In the special case in which α = 0, in which case we are dealing with an ε-skewed version
of the basic Azzalini skew normal density, it is possible to evaluate the required normalizing
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Figure 1. Examples of the DSN density for: (a) (ε,α) = (−0.5, 1) (black line), (ε,α) = (−0.6, 2) (dashed line) and
(ε,α) = (−0.2, 3) (grey line); (b) (ε,α) = (−0.2, 3) (black line), (ε,α) = (−0.5, 4) (dashed line) and (ε,α) = (−0.8, 5)
(grey line); (c) β = 2 (black line), β = 3 (dashed line) and β = 4 (grey line); (d) β = −2 (black line), β = −3 (dashed
line) and β = −4 (grey line).

constant. We have

d0,β = F(0; 0,β) = 1

2
− 1

π
arctanβ. (13)

Thus the density will be

fDSN(x; ε, 0,β) = φ(x/(1 + ε))�(βx/(1 + ε))I(x < 0)+ φ(x/(1 − ε))�(βx/(1 − ε))I(x ≥ 0)

1/2 − (ε/π) arctanβ
.

(14)
This model is similar to, though not the same as, the model introduced by Gómez et al.[10]
Figure 2 shows the shapes of the density (14) for different parameter values.

3.2. Distributional properties of the doubly skewed model

It is clear that the doubly skewed density (12) is continuous at 0 for every α,β and ε. However,
it is not differentiable at 0 unless both α and β are equal to 0. The density can be unimodal or
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6 B.C. Arnold et al.
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Figure 2. Examples of the DSN(ε, 0, 2) density for: (a) ε = −0.3 (black line), ε = −0.5 (dashed line) and ε = −0.7
(grey line) and (b) ε = 0.3 (black line), ε = 0.5 (dashed line) and ε = 0.7 (grey line).

bimodal. It includes several previously studied models as special cases, as noted in the list of
properties below.

Property 3.1 The DSN(0, 0, 0) density is the N(0, 1) density.

Property 3.2 The DSN(ε, 0, 0) density is the ESN(ε) density.

Property 3.3 The DSN(0, 0,β) density is the SN(β) density.

Property 3.4 The DSN(0,α, 0) density is the TN(α) density.

Property 3.5 The DSN(0,α,β) density is the ETN(α,β) density.

Property 3.6 If Z ∼ DSN(ε,α,β) then −Z ∼ DSN(−ε,α, −β).

3.3. Tractable sub-models

The full doubly skewed normal model (12) provides a flexible family of densities for fitting
univariate data sets. It, however, involves three shape parameters and a potentially troublesome
normalizing constant. In practice it will typically be appropriate to introduce, in addition, location
and scale parameters. The resulting five parameter family of densities will be of the form:

fDSN(x; ξ ,ω, ε,α,β)

= 2
cα
ω

⎡
⎢⎢⎣
φ(z/(1 + ε))�(α|z/(1 + ε)|)�(βz/(1 + ε))I(z < 0)

+φ(z/(1 − ε))�(α|z/(1 − ε)|)�(βz/(1 − ε))I(z ≥ 0)

1 − ε(1 − 2dα,β)

⎤
⎥⎥⎦ . (15)

where z = ω−1(x − ξ) and we write X ∼ DSN(θ) or X ∼ DSN(ξ ,ω, ε,α,β). The complexity
of this model motivates consideration of sub-models in which one of the three parameters is set
equal to zero. In some cases the full model (15) will need to be used, but it is to be hoped that
frequently one of the three simpler sub-models will suffice.
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Statistics 7

The three sub-models are

(i) fDSN(x; ξ ,ω, 0,α,β). This is the extended two-piece skew normal density. This model is
discussed in some detail in [4].

(ii) fDSN(x; ξ ,ω, ε, 0,β). This is the ε-skewed version of the Azzalini model.
(iii) fDSN(x; ξ ,ω, ε,α, 0). This is the ε-skewed version of the two-piece skew normal model of

Kim.

In subsequent sections, a careful analysis of sub-model (iii) will be presented. A parallel
treatment of sub-model (ii) is of course possible. Sub-model (iii) is selected because it exhibits
considerable flexibility and possible bi-modality (a property not shared by sub-model (ii)).

Remark 1 A natural competitor for modelling possibly bimodal data is a simple normal mixture
model of the form

f (x; p,μ1,μ2, σ 2
1 , σ 2

2 ) = p

σ1
φ

(
x − μ1

σ1

)
+ 1 − p

σ2
φ

(
x − μ2

σ2

)
.

Such a five parameter model might be considered as an alternative in situations in which the five
parameter (three shape parameters plus location and scale parameters) doubly skewed model
might be applied. Typically either an E-M algorithm or a vague prior Bayesian approach using
a Gibbs sampler would be used to select appropriate parameter values for fitting this model to
a given data set. Both the doubly skewed model and the mixture model will require similar
amounts of computational effort. Both involve five parameters. However, as can be seen from a
perusal of Figure 1, the doubly skewed densities do not appear to be of the form to be expected
from mixtures of normal densities. As a consequence the two models are best viewed as comple-
mentary rather than competing models. Some data sets will be better fitted by a doubly skewed
model, while for other data sets a mixture model will be more appropriate.

Remark 2 [(concomitant variables)] In many applications, we will have, for each observa-
tion Yi, a corresponding measurement xi of some concomitant variable which is expected to
have some influence on the variable Yi. A regression-type model of the form Yi = α + βxi + εi

might be considered in such a setting. Rather than assume that the ‘error’ variables, the εi’s,
are normally distributed, some authors have considered them to have a common skew normal
distribution. Of course, a doubly skewed normal distribution for the εi’s could also be consid-
ered. Such a model will have the Yi’s having a doubly skewed normal distribution with only
the location parameter being affected by the concomitant variables, the xi’s. More interest-
ing cases will arise when one allows any or all of the five parameters in the doubly skewed
model to be functions of the concomitant variable, and not necessarily with a linear link
function.

4. Doubly skewed model for β = 0

The purpose of the present section is to investigate the uni/bimodal version of the doubly skewed
normal density corresponding to the case in which β = 0.

In the particular case of Equation (12) in which β = 0, then the model reduces to become an
ε-skewed version of the two piece normal distribution. In this case it is also possible to give
an explicit expression for the normalizing constant, dα,0 = F(0,α, 0) = 1/2. The corresponding
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DSN0(–0.5, α).

Figure 3. Examples of the DSN0 density: (a) α = 0 (black line), α = 0.5 (dashed line) and α = 0.9 (grey line); (b)
α = −0.2 (black line), α = −0.5 (dashed line) and α = −0.9 (grey liner); (c) ε = −0.3 (black line), ε = 0 (dashed line)
and ε = 0.3 (grey line); (d) ε = −0.5 (black line), ε = 0 (dashed line) and ε = 0.5 (grey line).

density is given by

fDSN(z; ε,α, 0) =

⎧⎪⎪⎨
⎪⎪⎩

cαφ

(
z

1 + ε

) (
1 −�

(
αz

1 + ε

))
, z < 0,

cαφ

(
z

1 − ε

)
�

(
αz

1 − ε

)
, z ≥ 0.

(16)

Figure 3 shows the shapes of the density (16) for different parameter values. In the remainder of
this paper we will refer to the DSN(ε,α, 0) distribution as the DSN0(ε,α) distribution, or more
briefly as the DSN0 distribution.

4.1. Distributional properties of the DSN0 model

Clearly the density (16) is continuous at z = 0 for every α and ε, however it is not differentiable
at z = 0 when α 	= 0. Below we list some properties of the DSN0 model. Note that this model
contains the normal, epsilon-skew-normal and two-piece skew-normal densities as special cases.
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Statistics 9

Property 4.1 As ε → −1, the DSN0 distribution tends to the cαφ(z/2)�(αz/2)I(z ≥ 0)
density. In contrast, as ε → 1, DSN0 tends to the cαφ(z/2)�(−αz/2)I(z < 0) density.

Property 4.2 For α > 0, the density (16) is bimodal, i.e. in each region of z ∈ (−∞, 0] and
z ∈ [0, ∞), log f (z; ε,α, 0) is a concave function of z.

Property 4.3 For α > 0, two modes of Equation (16) are located at z = z1 and z = z2 where

z1 = −α(1 + ε)
φ(αz1/(1 + ε))

�(−αz1/(1 + ε))
and z2 = α(1 − ε)

φ(αz2/(1 − ε))

�(αz2/(1 − ε))
.

Here, z1 < 0 and z2 > 0.

Property 4.4 For α < 0, the single mode of Equation (16) is located at z = 0, because
f ′(z; ε,α, 0) < 0 for z > 0 and f ′(z; ε,α, 0) > 0 for z < 0.

4.2. Distribution function

Denote by FDSN0(z; ε,α) the distribution function of Equation (16), i.e.

FDSN0(z; ε,α) =

⎧⎪⎪⎨
⎪⎪⎩

cα
(1 + ε)

2

[
2�

(
z

1 + ε

)
−�SN

(
z

1 + ε

)]
, z < 0,

cα
(1 − ε)

2

[
arctan(α)

π
− 1

2
+�SN

(
z

1 − ε

)]
+ 1 + ε

2
, z ≥ 0,

(17)

where �SN is cdf of the SN(α) distribution.

Property 4.5

FDSN0(z; ε, 1) =

⎧⎪⎪⎨
⎪⎪⎩

2(1 + ε)

3

[
1 −�2

(
− z

1 + ε

)]
, z < 0,

(1 − ε)

3

[
1 + 2�2

(
z

1 − ε

)]
+ ε, z ≥ 0,

4.3. Stochastic representation

First we present two results which will be used later.

Proposition 4.1 If X ∼ ETN(α,β) then the random variable Y = |X | has a density of the
form:

fY (y;α) = 2cαφ(y)�(αy), y ≥ 0, (18)

If Y thas the density given in Equation (18) we say that it is a truncated skew-normal variable
and write Y ∼ TSN(α).

Corollary 1 If X ∼ ETN(α,β) and Y ∼ TN(α), then |X | D= |Y | ∼ TSN(α).

A random variable Z with density function (16) can be represented as a product of two inde-
pendent random variables. This result may be proved in a manner analogous to that provided
by Arellano-Valle et al. [6] in a related context. For simulation purposes, such a stochastic
representation of an DSN0(ε,α) random variable will clearly be useful.
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10 B.C. Arnold et al.

Proposition 4.2 For any α ∈ R and |ε| < 1, it follows that Z ∼ DSN0(ε,α) if and only if
there are two independent random variables Y and S with Y ∼ TSN(α) and P(S = 1 − ε) =
1 − P(S = −(1 + ε)) = (1 − ε)/2, such that Z

d= SY.

For applications it will be convenient to add location and scale parameters to our DSN0

distribution. If Z ∼ DSN0(ε,α) and if X = ξ + ωZ, where ξ ∈ R and ω > 0, then we will
write X ∼ DSN0(ξ ,ω, ε,α) or at times X ∼ DSN0(θ) where θ denotes the vector of parameters
(ξ ,ω, ε,α). This leads to the following definition.

Definition 4.1 A random variable X has a distribution in the DSN0 location and scale family
if the density is given by

fDSN0(x; θ) =

⎧⎪⎪⎨
⎪⎪⎩

cα
ω
φ

(
z

1 + ε

) (
1 −�

(
αz

1 + ε

))
, x < ξ ,

cα
ω
φ

(
z

1 − ε

)
�

(
αz

1 − ε

)
, x ≥ ξ .

(19)

where z = ω−1(x − ξ) and we write X ∼ DSN0(θ) or X ∼ DSN0(ξ ,ω, ε,α).

4.4. Moments

The following result provides a recursive formula for the moments of a random variable with
density (18) which will be useful for calculating the moments of a DSN0 random variable.

Proposition 4.3 Let Y ∼ TSN(α), then

dr(α) := E(Y r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, r = 0,
cα√
2π

(
1 + α√

1 + α2

)
, r = 1,

(r − 1)dr−2(α)+ 2r/2−1αcα
π(1 + α2)r/2

�
( r

2

)
, r ≥ 2.

(20)

Proof The result is achieved by integrating the expression

d

dt
{2tr−1φ(t)�(αt)} = 2(r − 1)tr−2φ(t)�(αt)− 2trφ(t)�(αt)+

√
2/παtr−1φ(t

√
1 + α2)

between 0 and ∞. �

Proposition 4.4 Let Z ∼ DSN0(ε,α) and X = ξ + ωZ ∼ DSN0(θ), then, for r = 1, 2, . . . , we
have

E(Zr) = [(1 − ε)r+1 + (−1)r(1 + ε)r+1]dr(α)

2
and E(X r) =

r∑
j=0

(
r
j

)
ξ r−jωjE(Zj). (21)

where dr(α) is given in Equation (20).

Proof The result is readily verified using the stochastic representation given in Proposition 4.2.
�
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Statistics 11

For reference we list the first four moments of the standard DSN0 distribution. If Z ∼
DSN0(ε,α) then

E(Z) = −
√

2

π
εcα

(
1 + α√

1 + α2

)
, (22)

E(Z2) = (1 + 3ε2)

(
1 + αcα

π(1 + α2)

)
, (23)

E(Z3) = −2

√
2

π
ε(1 + ε2)cα

(
2 + α(3 + 2α2)

(1 + α2)3/2

)
, (24)

E(Z4) = (1 + 10ε2 + 5ε4)

(
3 + α(5 + 3α2)cα

π(1 + α2)2

)
. (25)

Standard expressions for kurtosis and skewness can then be obtained using Equations (22)–(25).

5. Maximum likelihood estimation

5.1. Likelihood score functions

Let X1, . . . , Xn be a random sample drawn from the DSN0(ξ ,ω, ε,α) distribution. The log-
likelihood function for θ is

∑n
i=1 l(θ , Xi), where l(θ , X ) is the log-likelihood for θ based on a

single observation X , that is,

l(θ ; X )) ∝ log
(cα
ω

)
− 1

2

(
Z

1 + ε

)2

I(X < ξ)+ log�

(
− αZ

1 + ε

)
I(X < ξ)

− 1

2

(
Z

1 − ε

)2

I(X ≥ ξ)+ log�

(
αZ

1 − ε

)
I(X ≥ ξ).

where Z = ω−1(X − ξ). The score function is
∑n

i=1 Sθ (θ , Xi), where Sθ (θ , X ) = ∂l(θ , X )/∂θ is
the vector (Sξ , Sω, Sα , Sε) with elements

Sξ =
[

Z

ω(1 + ε)2
+ α

ω(1 + ε)
R(Z)

]
I(X < ξ)+

[
Z

ω(1 − ε)2
− α

ω(1 − ε)
S(Z)

]
I(X ≥ ξ),

Sω = − 1

ω
+

[
Z2

ω(1 + ε)2
+ αZ R(Z)

ω(1 + ε)

]
I(X < ξ)+

[
Z2

ω(1 − ε)2
− αZ S(Z)

ω(1 − ε)

]
I(X ≥ ξ),

Sα = − cα
π(1 + α2)

− Z

1 + ε
R(Z) I(X < ξ)+ Z

1 − ε
S(Z) I(X ≥ ξ),

Sε =
[

Z2

(1 + ε)3
+ αZ

(1 + ε)2
R(Z)

]
I(X < ξ)+

[
− Z2

(1 − ε)3
+ αZ

(1 − ε)2
S(Z)

]
I(X ≥ ξ),

where R(Z) = φ(αZ/(1 + ε))/�(−αZ/(1 + ε)) and S(Z) = φ(αZ/(1 − ε))/�(αZ/(1 − ε)).
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12 B.C. Arnold et al.

5.2. The information matrix

For one observation X ∼ DSN0(θ), the i, jth element of the information matrix I is given by

Iθiθj = E

[
−∂

2l(θ ; X )

∂θi∂θj

]
.

The corresponding second partial derivatives of the log-likelihood are listed in the appendix.
Eventually, one obtains the following expressions for the elements of the information matrix:

Iξξ = 1

ω2(1 − ε2)
+ α3cα
πω2(1 − ε2)(1 + α2)

+ 2α2cα
ω2(1 − ε2)

ρ0(α),

Iξε =
√

2cα√
πω(ε2 − 1)

+
√

2α(1 + 2α2)cα
2
√
πω(ε2 − 1)(1 + α2)3/2

+ 2α2cα
ω(ε2 − 1)

ρ1(α),

Iωω = 2

ω2
+ α(1 + 3α2)cα
πω2(1 + α2)2

+ 2α2cα
ω2

ρ2(α),

Iωα = (1 − 2α2)cα
πω(1 + α2)2

− 2αcα
ω

ρ2(α),

Iαα = 2cαρ2(α)− c2
α

π2(1 + α2)2
,

Iεε = 3

1 − ε2
+ α(1 + 3α2)cα
π(1 − ε2)(1 + α2)2

+ 2α2cα
1 − ε2

ρ2(α),

Iξω = Iξα = Iωε = Iαε = 0,

where

ρr(α) :=
∫ ∞

0
tr φ

2(αt)

�(αt)
φ(t) dt, r = 0, 1, 2. (26)

which have to be evaluated numerically.

5.2.1. Special cases

The important point is that there is sufficient regularity for the asymptotic normality of the MLEs
to hold when I is non-singular, and in this case, they have covariance matrix I−1. Here, I is non-
singular and the parameters ω and α are orthogonal to ξ and to ε. The elements of the two-piece
skew-normal case are obtained by replacing ε = 0. In the epsilon-skew-normal case for which
α = 0, the non-zero elements of the information matrix are

Iξξ = 1

ω2(1 − ε2)
, Iξε = 2

√
2√

πω(ε2 − 1)
, Iωω = 2

ω2
, Iωα = 2

πω
,

Iαα = 2π − 4

π2
, Iεε = 3

1 − ε2
.

In the normal case for which (ε,α) = (0, 0), the non-zero elements of the information matrix are

Iξξ = 1

ω2
, Iξε = − 2

√
2√
πω

, Iωω = 2

ω2
, Iωα = 2

πω
, Iαα = 2π − 4

π2
, Iεε = 3.
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Statistics 13

Remark 3 Gómez et al. [11] introduced an alternative possibly bimodal extension of the skew-
normal distribution, which they called a skew-flexible-normal distribution. The corresponding
density is of the form

fSFN(z;α, δ) = φ(|z| + δ)�(αz)

1 −�(δ)
, z ∈ (−∞, ∞), (27)

where α, δ ∈ (−∞, ∞). This density is bimodal if δ < 0.
Although both models (19) and (27) yield possibly bimodal extensions of the skew-normal

distribution, their genesis is different and they differ considerably in their properties. One major
difference between the two models is that, although both include the classical normal distribution
as a special case, the Fisher information matrix for Equation (27) is not always non-singular as
contrasted with the situation for the model (19), for which the Fisher information matrix is always
non-singular.

6. Two illustrative data sets

To illustrate the estimation procedure discussed in the previous section we will use two data sets.
We consider the variables N-Cream (first example) and E-Shiny (second example) available in the
database creaminess of cream cheese which can be found at http://www.models.kvl.dk/Cream.
Table 1 shows summary statistics for these two examples.

In Tables 2 and 3, three models are fitted to the data in the first and second example, respec-
tively. They are ESN(ε) = DSN0(0, ε), TN(α) = DSN0(α, 0) and DSN0(ε,α). In all cases, the
models are augmented by the inclusion of location (ξ ) and scale (ω) parameters.

In all cases, the parameters are estimated by maximum likelihood using the bbmle package
for R.[12] The standard errors of the maximum likelihood estimates are calculated using the
information matrix corresponding to each model.

To compare the DSN0 model with the ESN and TN models for the first data set,
consider testing the null hypothesis of an ESN or a TN distribution against a DSN0

distribution using the likelihood ratio statistics based on the ratios �1 = LESN(μ̂, σ̂ , ε̂)/

Table 1. Descriptive statistics for the first and second
examples.

Example n x̄ s γ1 γ2

1 240 7.578 1.716 −0.551 0.173
2 240 8.109 2.434 −0.209 −0.466

Note: Here, γ1 and γ2 denote the sample skewness and kurtosis
coefficients, respectively.

Table 2. Estimated parameters and log-likelihood for the models ESN, TN and DSN0
for the first example.

MLEs ESN TN DSN0

ξ 8.348(0.263) 7.650(0.812) 8.400(0.191)
ω 1.664(0.216) 2.010(0.212) 6.084(0.345)
α −0.378(0.202) −2.846(0.178)
ε 0.302(0.091) 0.320(0.052)
Log-likelihood −462.696 −469.419 −459.956

Note: The respective standard errors are in parentheses.
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14 B.C. Arnold et al.

Table 3. Estimated parameters and log-likelihood for the models Normal,
ESN, TN and DSN0 for the second example.

MLEs N ESN TN DSN0

ξ 8.109(0.403) 9.048(0.390) 8.148(0.143) 8.907(0.165)
ω 2.429(0.315) 2.413(0.313) 2.265(0.087) 2.210(0.077)
α 1.986(1.121) 1.322(0.802)
ε 0.234(0.093) 0.202(0.050)
Log-likelihood −553.505 −552.000 −549.393 −548.533

Note: The respective standard errors are in parentheses.
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Figure 4. Histogram for the N-Cream variable. The curves represent densities fitted by maximum likelihood:
DSN0(ξ̂ , ω̂, ε̂, α̂) (black line), ESN(ξ̂ , ω̂, ε̂) (grey line) and TN(ξ̂ , ω̂, α̂) (dashed line).

LDSN0(μ̂, σ̂ , ε̂, α̂) and �2 = LTN(μ̂, σ̂ , α̂)/LDSN0(μ̂, σ̂ , ε̂, α̂). Substituting the estimated values,
we obtain −2 log L(�1) = −2(−462.696 + 459.956) = 5.48 and −2 log L(�2) =
−2(−469.419 + 459.956) = 18.93 which, when compared with the 95% critical value of the
χ2

1 = 3.84, indicate that the null hypotheses are clearly rejected and there is a strong indication
that the DSN0 distribution presents a much better fit than either the ESN or the TN distribution
to the data set under consideration.

The summaries provided by Table 1 serve to illustrate a key feature of the DSN0 model; its
flexibility and ability to adapt to a wide range of coefficients of skewness and kurtosis, in contrast
to many other models.

For the second example, we illustrate the fit of the DSN0 model to a set of data that is more or
less symmetric to see whether the parameter ε is significantly different from 0. We use data on the
variable E-Shiny, Example 2, and fit four competing models: normal, epsilon-skew-normal, two-
piece skew-normal and DSN0 (Figure 5). However a 95% confidence interval for ε is given by
(0.103,0.301) which does not include 0 and which indicates that, for this data set, ε is significantly
different from 0. Consequently, for this data set, as for the first data set, the DSN0 model appears
to be a good choice to fit the data.
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Figure 5. Histogram for the E-Shiny variable. The curves represent densities fitted by maximum likelihood:
DSN0(ξ̂ , ω̂, ε̂, α̂)(black line), ESN(ξ̂ , ω̂, ε̂) (grey line), TN(ξ̂ , ω̂, α̂) (dashed line) and N(ξ̂ , ω̂) (dotted line).

The conclusion that the DSN0 model appears to be more appropriate for both of the data sets
analysed here is supported by inspection of Figures 4 and 5 where the histograms and the fitted
curves for the data sets are displayed.
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Appendix

(a) The second-order derivatives of l(θ ; X ) are

∂2l(θ ; X )

∂ξ2
= − 1

ω2

[
1

(1 + ε)2
− α3Z

(1 + ε)3
R(Z)+ α2

(1 + ε)2
R2(Z)

]
I(X < ξ)

− 1

ω2

[
1

(1 − ε)2
+ α3Z

(1 − ε)3
S(Z)+ α2

(1 − ε)2
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂ω∂ξ
= − 1

ω2

[
2Z

(1 + ε)2
+ α

(1 + ε)
R(Z)− α3Z2

(1 + ε)3
R(Z)+ α2Z

(1 + ε)2
R2(Z)

]
I(X < ξ)

− 1

ω2

[
2Z

(1 − ε)2
− α

(1 − ε)
S(Z)+ α3Z2

(1 − ε)3
S(Z)+ α2Z

(1 − ε)2
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂α∂ξ
= − 1

ω

[
− 1

1 + ε
R(Z)+ α2Z2

(1 + ε)3
R(Z)− αZ

(1 + ε)2
R2(Z)

]
I(X < ξ)

− 1

ω

[
1

1 − ε
S(Z)− α2Z2

(1 − ε)3
S(Z)− αZ

(1 − ε)2
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂ε∂ξ
= − 1

ω

[
2Z

(1 + ε)3
+ α

(1 + ε)2
R(Z)− α3Z2

(1 + ε)4
R(Z)+ α2Z

(1 + ε)3
R2(Z)

]
I(X < ξ)

− 1

ω

[
− 2Z

(1 − ε)3
+ α

(1 − ε)2
S(Z)− α3Z2

(1 − ε)4
S(Z)− α2Z

(1 − ε)3
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂ω2
= 1

ω2
− 1

ω2

[
3Z2

(1 + ε)2
+ 2αZ

1 + ε
R(Z)− α3Z3

(1 + ε)3
R(Z)+ α2Z2

(1 + ε)2
R2(Z)

]
I(X < ξ)

− 1

ω2

[
3Z2

(1 − ε)2
− 2αZ

1 − ε
S(Z)+ α3Z3

(1 − ε)3
S(Z)+ α2Z2

(1 − ε)2
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂α∂ω
= − 1

ω

[
− Z

1 + ε
R(Z)+ α2Z3

(1 + ε)3
R(Z)− αZ2

(1 + ε)2
R2(Z)

]
I(X < ξ)

− 1

ω

[
Z

1 − ε
S(Z)− α2Z3

(1 − ε)3
S(Z)− αZ2

(1 − ε)2
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂ε∂ω
= − 1

ω

[
2Z2

(1 + ε)3
+ αZ

(1 + ε)2
R(Z)− α3Z3

(1 + ε)4
R(Z)+ α2Z2

(1 + ε)3
R2(Z)

]
I(X < ξ)

− 1

ω

[
− 2Z2

(1 − ε)3
+ αZ

(1 − ε)2
S(Z)− α3Z3

(1 − ε)4
S(Z)− α2Z2

(1 − ε)3
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂α2
= cα(cα + 2πα)

π2(1 + α2)2
−

[
− αZ3

(1 + ε)3
R(Z)+ Z2

(1 + ε)2
R2(Z)

]
I(X < ξ)

−
[

αZ3

(1 − ε)3
S(Z)+ Z2

(1 − ε)2
S2(Z)

]
I(X ≥ ξ),

∂2l(θ ; X )

∂ε∂α
= −

[
− Z

(1 + ε)2
R(Z)+ α2Z3

(1 + ε)4
R(Z)− αZ2

(1 + ε)3
R2(Z)

]
I(X < ξ)

−
[
− Z

(1 − ε)2
S(Z)+ α2Z3

(1 − ε)4
S(Z)+ αZ2

(1 − ε)3
S2(Z)

]
I(X ≥ ξ)

and

∂2l(θ ; X )

∂ε2
= −

[
3Z2

(1 + ε)4
+ 2αZ

(1 + ε)3
R(Z)− α3Z3

(1 + ε)5
R(Z)+ α2Z2

(1 + ε)4
R2(Z)

]
I(X < ξ)

−
[

3Z2

(1 − ε)4
− 2αZ

(1 − ε)3
S(Z)+ α3Z3

(1 − ε)5
S(Z)+ α2Z2

(1 − ε)4
S2(Z)

]
I(X ≥ ξ).

The following proposition gives the truncated moments that are needed to calculate the information matrix of the DSN0
model.
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Proposition .1 For integer r ≥ 0 and Z ∼ DSN0(ε,α),

(a) EZ<0(Zr) = (−1)r(1 + ε)r+1dr(α)/2 and EZ≥0(Zr) = (1 − ε)r+1dr(α)/2,
(b)

EZ<0(Z
rR(Z)) = (−1)r

2(r−3)/2(1 + ε)r+1cα
π(1 + α2)(r+1)/2

�

(
r + 1

2

)
,

(c)

EZ≥0(Z
rS(Z)) = 2(r−3)/2(1 − ε)r+1cα

π(1 + α2)(r+1)/2
�

(
r + 1

2

)
,

(d) EZ<0(ZrR2(Z)) = (−1)r(1 + ε)r+1cαρr(α) and EZ≥0(ZrS2(Z)) = (1 − ε)r+1cαρr(α),

where dr(α) and ρr(α) are given in Equations (20) and (26), respectively.

Proof Applying the definition of mathematical expectation and making changes of variables, t = −z/(1 + ε) and u =
z/(1 − ε), respectively, the results follow. �

(b) Proof of Proposition 4.1.

Proof Let X ∼ ETN(α,β) then the density function of Y = |X | is given by

fY (y) = fX (y;α,β)+ fX (−y;α,β)

= 2cαφ(y)�(α|y|)�(βy)+ 2cαφ(y)�(α| − y|)�(−βy)

= 2cαφ(y)�(αy)[�(βy)+�(−βy)]

= 2cαφ(y)�(αy)I(y ≥ 0).

�

D
ow

nl
oa

de
d 

by
 [

Y
or

k 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

7:
16

 1
2 

A
ug

us
t 2

01
4 


	Introduction
	Doubly skewed models
	The doubly skewed normal distribution
	The family of doubly skewed normal densities
	Distributional properties of the doubly skewed model
	Tractable sub-models

	Doubly skewed model for =0
	Distributional properties of the DSN0 model
	Distribution function
	Stochastic representation
	Moments

	Maximum likelihood estimation
	Likelihood score functions
	The information matrix

	Two illustrative data sets
	Acknowledgements
	References




