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Abstract

Regression analysis is a technique widely used in different areas of hu-
man knowledge, with distinct distributions for the error term. It is the case,
however, that regression models with the error term following a bimodal
distribution are not common in the literature, perhaps due to the lack of
simple to deal with bimodal error distributions. In this paper, we propose a
simple to deal with bimodal regression model with a symmetric-asymmetric
distribution for the error term for which for some values of the shape pa-
rameter it can be bimodal. This new distribution contains the normal and
skew-normal as special cases. A real data application reveals that the new
model can be extremely useful in such situations.

Key words: Bimodal Distribution, Generalized Gaussian Distribution, Lin-
ear Regression, Power Regression Model.

Resumen

El análisis de regresión es una técnica muy utilizada en diferentes áreas de
conocimiento humano, con diferentes distribuciones para el término de error,
sin embargo los modelos de regresión con el termino de error siguiendo una
distribución bimodal no son comunes en la literatura, tal vez por la simple
razón de no tratar con errores con distribución bimodal. En este trabajo
proponemos un camino sencillo para hacer frente a modelos de regresión
bimodal con una distribución simétrica - asimétrica para el término de error
para la cual para algunos valores del parámetro de forma esta puede ser
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bimodal. Esta nueva distribución contiene a la distribución normal y la
distribución normal asimétrica como casos especiales. Una aplicación con
datos reales muestra que el nuevo modelo puede ser extremadamente útil en
algunas situaciones.

Palabras clave: distribución bimodal, distribución gaussiana generalizada,
regresión lineal, modelo de regresión exponenciado.

1. Introduction

To study the relationship between variables in different areas of human knowl-
edge, linear and nonlinear regression models have been substantially used. It is
typically considered that the error term follows a normal distribution although
more general symmetric error distributions have also been considered. One of
those alternatives is to consider that the errors follow distributions with heavier
tails than those of normal distribution, in order to reduce the influence of outly-
ing observations. In this context, Lange, Little and Taylor (1989) proposed the
Student-t model with unknown degrees of freedom for parameter ν. Cordeiro, Fer-
rari, Uribe-Opazo and Vasconcellos (2000), and Galea, Paula and Cysneiros (2005)
present results from the study of inferential aspects of symmetrical nonlinear mod-
els. For the asymmetric nonlinear model, we use the work of Cancho, Lachos and
Ortega (2010). Symmetrical measurement error models have been investigated in
Arellano-Valle, Bolfarine and Vilca-Labra (1996).

One situation in which we encounter an anomaly in the error term of the model
occurs when it is of interest to explain the fat percentage in the human body as
a function of the individual weight. It is the case, however, that given inherent
gender peculiarities, the exclusion of the gender variable can lead to a bimodal
error distribution model. That is, not taking into account the sex variable , leads
to a regression model for which the distribution of the error term is no longer
unimodal.

A viable alternative to this situation is to use a mixture of normal distributions
for the error term. According to this alternative, there are two models to estimate,
one for each component of the normal mixture, namely (εj for j = 1, 2); they are
both normally distributed with mean zeros and variance σj for j = 1, 2. According
to De Veaux (1989), for the special case of two explanatory variables X1 and X2,
the response variable can be written as

yi =

{
β10 + β11x1i + β12x2i + ε1i, with probability p,
β20 + β21x1i + β22x2i + ε2i, with probability 1− p

where the εji ∼ N(0, σ2
j ) are independent, j = 1, 2, i = 1, 2, · · · , n. Consequently,

response yi has a pdf

f(yi) =
p

σ1
φ

(
yi − β10 − β11x1i − β12x2i

σ1

)
+

1− p
σ2

φ

(
yi − β20 − β21xi − β22x2i

σ2

)
,
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for i = 1, 2, . . . , n. Although widely recommended, this alternative has some im-
portant drawbacks. The first results from lack of identifiability of some model
parameters, more specifically, β10 and β20. Another difficulty is related to con-
vergence problems with the algorithm for parameter estimation, including the
proportion of data points for each model. Moreover, the model is not parsimo-
nious at all, since by increasing the number of explanatory variables, the number
of parameters in the model jumps to nine. For instance, for one explanatory vari-
able there are seven parameters to be estimated, making algorithm convergence
difficult. De Veaux (1989) presents an EM-algorithm for the mixture of regression
models. Further results can be found in Quandt (1958), Turner (2000), and Young
& Hunter (2010), among others.

In this paper, we suggest using the symmetric-asymmetric bimodal alpha-power
model, considered in Bolfarine, Martínez and Salinas (2012), to adjust data with a
linear relation. Results from two real data applications are reported the illustrate
the usefulness of the models developed. One alternative, clearly, is to undertake
data transformation or use mixtures of distributions, as mentioned above.

The paper is organized as follows. Section 2 is devoted to describing the bi-
modal symmetric-asymmetric alpha-power distribution and some of its main prop-
erties. The model considered generalizes both the skew-normal model (Azzalini
1985) and the power-normal model (Pewsey, Gómez and Bolfarine 2012). The
extension of the normal multiple regression model to the case in which the error
term follows the bimodal symmetric-asymmetric power-normal (ABPN) model is
considered in Section 3. Maximum likelihood estimation is discussed in Section 4.
In particular, it is shown that the Fisher information matrix is nonsingular and
allows for normality to be tested using the likelihood ratio statistics. A real appli-
cation considered in Section 5 illustrates the fact that the model considered can
outperform traditional symmetric models that have been previously considered in
the literature, in specifically the mixture of normals.

2. The Bimodal Symmetric-Asymmetric
Alpha-Power Distribution

The alpha-power distribution was first considered in Durrans (1992), and its
pdf is given by

g(z;α) = αφ(z){Φ(z)}α−1, z ∈ R, (1)

where α ∈ R+ is a shape parameter, and Φ and φ are the density and distribution
functions of the standard normal, respectively. We use the notation Z ∼ PN(α).
The location-scale extension of Z, Y = µ+ σZ, where ξ ∈ R and σ ∈ R+, have a
probability density function given by

ϕ(y;µ, σ, α) =
α

σ
φ

(
y − µ
σ

){
Φ

(
y − µ
σ

)}α−1

. (2)

We use the notation Y ∼ PN(µ, σ, α).
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Several authors, for example, Gupta and Gupta (2008), Pewsey, Gómez &
Bolfarine (2012), Rego, Cintra & Cordeiro (2012), studied properties of this model,
but the fact that this model can be seen as an aditive generalized model seems to be
unknown. This model can be further extended by considering µi = x′iβ replacing
µ, where β is an unknown vector of regression coefficients and xi a vector of known
regressors, possibly correlated with the response vector.

Martínez-Flórez, Bolfarine & Gómez (2015) considered the multiple regression
model represented by

yi = x′iβ + εi, i = 1, 2, . . . , n, (3)

where β is a vector of unknown constants, xi are values of known explanatory vari-
ables, and the error terms εi are independent random variables with power-normal
distribution, PN(0, σ, α). This model becomes a viable alternative to the ordinary
regression models under normality for the situation of asymmetrically distributed
errors with kurtosis above 3 (normal distribution). These authors studied the
main properties of this model, obtained equations to estimate model parameters
via maximum likelihood, and deduced its information matrices. They found that
the Fisher information matrix is nonsingular. Although the new proposal is a vi-
able alternative to model data with low and high asymmetry, this model can only
be applied to unimodal situations.

As an extension of the PN model to bimodal data, Bolfarine, Martínez-Flórez
& Salinas (2012) introduced the family of bimodal distributions, one symmetric
and the other asymmetric. The corresponding density function of the bimodal
power-normal distribution is given by

ϕ(y;µ, σ, α) =
α

σ

2α−1

2α − 1
φ

(
y − µ
σ

){
Φ

(∣∣∣∣y − µσ
∣∣∣∣)}α−1

, x ∈ R, (4)

where µ is the location parameter and σ is the scale parameter. We use the
notation BPN(µ, σ, α). Note that for α = 1 the normal distribution N(µ, σ2)
follows.

The r-th moment of the random variable Y ∼ BPN(0, 1, α) is given by

E(Zr) =

{
0, if r is odd,

2µr(0), if r is even.

where

µr(0) = αcα

∫ ∞
0

zrφ(z) {Φ(z)}α−1
dz, r = 0, 1, 2, . . . (5)

Hence, it follows that E(Z) = E(Z3) = 0. The authors show that the pdf is
symmetric and, moreover, if α > 1, then its density function is bimodal. Fur-
thermore, maximum likelihood estimation is considered for model parameters and
the Fisher information matrix is derived and shown to be nonsingular. Under
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these conditions, and given that it is a regular continuous function, it also fol-
lows the

√
n-normal approximation for the maximum likelihood estimators for the

parameter vector.
Bolfarine et al. (2012) also studied a distribution for fitting symmetric-asymmetric

data with bimodal behaviour and this distribution was termed the bimodal symmetric-
asymmetric power-normal model.

The density function for the location-scale version of the model can be written
as

ϕ(y;µ, σ, α, λ) =
2αcα
σ

φ

(
y − µ
σ

){
Φ

(∣∣∣∣y − µσ
∣∣∣∣)}α−1

Φ

(
λ
y − µ
σ

)
,

where y ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, α ∈ R+

is a shape parameter, λ ∈ R is an asymmetry parameter, and cα = 2α−1/(2α − 1)
is the normalizing constant. We use the notation Y ∼ ABPN(µ, σ, α, λ).

The authors show that for α > 1 and λ satisfying
[
1− λ

z
φ(λz)
Φ(λz)

]
> 0, this model

is bimodal asymmetric; whereas for α > 1 and λ = 0, it is bimodal symmetric.
Conversely, for α ≤ 1 the resulting model is unimodal. We note that for α = 1
the skew-normal model follows, for α = 1 and λ = 0 the normal case follows, and
for λ = 0 the bimodal power-normal model follows.

The r-th moment of a random variable Z ∼ ABPN(0, 1, α, λ) is given by

E(Zr) =

{
2µr(0), if r is even,

2µr(0) + 2µr(β, α), if r is odd,

where

µr(λ, α) = 2αcα

∫ ∞
0

zrφ(z) {Φ(z)}α−1
Φ(λz)dz.

In addition to these results, these authors have shown that the information
matrix is nonsingular at the vicinity of symmetry, that is, α = 1 and λ = 0. This
leads to large sample normal distribution for the maximum likelihood estimators
for which the asymptotic covariance matrix is the inverse of the Fisher information
matrix.

3. The Multiple Regression Model With
ABPN Errors

We assume, under the ordinary multiple regression model, that the error term
follows a ABPN distribution with parameters µ = 0, σ, α and λ, that is, for i =
1, 2, . . . , n, the εi are independent random variables with εi ∼ ABPN(0, σ, α, λ).
Hence, it follows that the density function of εi is given by

ϕ(εi; 0, σ, α, λ) =
2αcα
σ

φ
(εi
σ

){
Φ
(∣∣∣εi
σ

∣∣∣)}α−1

Φ
(
λ
εi
σ

)
,

Revista Colombiana de Estadística 40 (2017) 65–83



70 Guillermo Martínez-Flórez, Hugo S. Salinas & Heleno Bolfarine

for i = 1, . . . , n. Therefore, it follows that yi given xi (denoted yi | xi) also follows
a ABPN distribution, that is, yi | xi ∼ ABPN(x′iβ, σ, α, λ), for i = 1, 2, . . . , n.
In this model, x′iβ is a location parameter, σ is a scale parameter, α is a shape
parameter, and λ is an asymmetry parameter where β is a vector of unknown
constants and xi are values of known explanatory variables.

The interpretation of the systematic part of the model, namely (β0, β1, · · · , βp),
is similar to that of the model under the ordinary normal assumption, and σ is a
scale parameter related to the error terms.

Under the ABPN model, E(yi) 6= x′iβ, and we have to make the following cor-
rection to obtain the regression line as the expected value of the response variable
β∗0 = β0 +µε, where µε = E(εi). Thus, E(yi) = x′iβ

∗ where β∗ = (β∗0 , β1, . . . , βp)
′.

As special cases this model contains the model with normal errors, that is,
λ = 0 and α = 1, as well as the model with skew-normal errors for α = 1 and the
bimodal symmetric error model for λ = 0.

4. Inference for the Multiple Linear ABPN Model

4.1. Likelihood and Score Functions

Considering a matrix notation where Y denotes a (n × 1)-dimensional vector
with entries yi and X the (n×(p+1))-matrix with rows x′i, the likelihood function
for θ = (β′, σ, α, λ)′, given a random sample of size n, Y = (Y1, Y2, . . . , Yn)′, can
be written as

`(β;Y) = n[ln(2α) + ln(cα)− ln(σ)]

− 1

2σ2
(Y −Xβ)′(Y −Xβ) + 1′ [(α− 1)U1 + U2] ,

where 1′ is a n-dimensional vector, U1 and U2 are n-dimensional vectors with
elements ln

{
Φ
∣∣∣yi−x′

iβ
σ

∣∣∣} and ln
{

Φ
(
λ
yi−x′

iβ
σ

)}
, respectively, for i = 1, 2, . . . , n.

The score function, U = (U(β), U(σ), U(α), U(λ)), has elements that are given by

U(β) =
∂`(β;Y)

∂β
=

1

σ
X′ [Z− (α− 1)SΛ1α − λΛ1λ] ,

U(α) =
∂`(β;Y)

∂α
= n

(
1

α
+ U1

)
+ n ln(2)(1− (1− 2−α)−1),

U(σ) =
∂`(β;Y)

∂σ
=

1

σ

[
−n+ Z′Z− (α− 1) |Z|′ Λ1α − λZ′Λ1λ

]
,

U(λ) =
∂`(β;Y)

∂λ
= Z′Λ1λ,

where S = diag {sgn(z1), . . . , sgn(zn)},

Zk′ = (zk1 , . . . , z
k
n),

∣∣Zk∣∣′ =
(∣∣zk1 ∣∣ , . . . , ∣∣zkn∣∣) ,
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Λ1α =
(
φ(|z1|)
Φ(|z1|) , . . . ,

φ(|zn|)
Φ(|zn|)

)′
, Λ1λ =

(
φ(λz1)
Φ(λz1) , . . . ,

φ(λzn)
Φ(λzn)

)′
and U1 = 1

n

∑n
i=1 U1i

with zi =
yi−x′

iβ
σ for i = 1, . . . , n.

After some algebraic manipulations, maximum likelihood estimating equations
are given by

β = βMQ + σ(X′X)−1X′ [(α− 1)SΛ1α + λΛ1λ] , α = − 1

U1

1

n
Z′Z = 1 +

α− 1

n
|Z|′ Λ1α +

λ

n
Z′Λ1λ and Z′Λ1λ = 0

where βMQ = (X′X)−1X′Y. Hence the MLE of parameter vector β is equal to the
least squares estimator for β, plus the asymmetry and bimodal correcting terms.
Non analytical solutions are available for the likelihood (score) equations, and,
hence, they have to be solved numerically using iterative procedures such as the
Newton-Raphson or quase-Newton type algorithms.

Hence, the maximum likelihood estimator for θ can be obtained by implement-
ing the following iterative procedure:

θ̂(k+1) = θ̂(k) + [J(θ̂(k))]−1U(θ̂(k)), (6)

where J(θ) = − ∂2`(θ)

∂θ ∂θ>
is the observed information matrix. There are however,

other numerical procedures based on the expected (Fisher) information matrix.
These optimization algorithms can be found in the following packages: nlm,

optim, maxLik or optimx of the R software (R Development Core Team. (2015)).
These are procedures that are based on the function score for parameter estima-
tion.

To initialize the estimation process, the following algorithm is considered.
Firstly, the ordinary normal linear regression model is fitted and model errors
are estimated. Using these estimates, the ABPN model is fitted, from which esti-
mates for λ and α are computed. Then, µε can be estimated. For ε∗i = εi−µε, we
have E(ε∗) = 0 and V ar(ε∗) = σ2Φ2(α, λ), where Φ2 is the variance of the random
variable ABPN(0, 1, α, λ).

Hence, the errors sum of squares are minimized, namely,

n∑
i=1

ε∗2i =

n∑
i=1

(yi − x′iβ
∗)

2
.

We the obtain the least squares estimators of β∗ and σ, which are given by:

β̂
∗

= (X′X)−1X′Y and σ̂2 =
Φ−1

2 (α̂, λ̂)

n− 2

n∑
i=1

(
yi − x′iβ̂

∗)2

.

Moreover, V ar(β̂
∗
) = σ2Φ2(α, λ)(X′X)−1.
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4.2. The Observed and Expected Information Matrices

Before computing the information matrix (Fisher), we present the elements of
the observed information matrix which, after extensive algebraic manipulations,
are given by

jβ′β =
1

σ2
X′
[
In + (α− 1)Λ2α + λ2Λ2λ

]
X,

jσβ =
1

σ2
X′ [2Z + (α− 1)Λ3α + λΛ3λ] ,

jσσ =
1

σ2

[
−n+ 3Z′Z + (α− 1)

[(
−2 |Z|′ +

∣∣Z3
∣∣′)Λ1α + Z′Λ1αΛ′1αZ

]]
+

λ

σ2

[(
−2Z′ + λ2Z3′

)
Λ1λ + λZ′Λ1λΛ′1λZ

]
,

jαα = n[α−2 − 2α(2α − 1)−2 ln2(2)],

jλσ =
1

σ

[
Z′Λ1λ − λ2Z3′Λ1λ − λZ′Λ1λΛ′1λZ

]
,

jλλ = λZ3′Λ1λ + Z′Λ1λΛ′1λZ,

jαβ =
1

σ
X′SΛ1α, jασ =

1

σ
|Z|′ Λ1α, jλβ = − 1

σ
X′Λ3λ and jαλ = 0.

where

Λ2α = diag

{(
φ(|z1|)
Φ(|z1|)

)2

+ |zi|
φ(|zi|)
Φ(|zi|)

}
, Λ2λ = diag

{
λzi

φ(λzi)

Φ(λzi)
+

(
φ(λzi)

Φ(λzi)

)2
}
,

Λ3α = (a1, a2, . . . , an)′, with

ai =

{
sgn(zi)z

2
i

φ(|zi|)
Φ(|zi|)

+ zi

(
φ(|zi|)
Φ(|zi|)

)2

− sgn(zi)
φ(|zi|)
Φ(|zi|)

}
,

Λ3λ = (b1, b2, . . . , bn)′, with

bi =

{
λ2z2

i

φ(λzi)

Φ(λzi)
+ λzi

(
φ(λzi)

Φ(λzi)

)2

− φ(λzi)

Φ(λzi)

}
,

and i = 1, . . . , n.
The above expressions can be computed numerically. The observed information

matrix is obtained after replacing unknown parameters with the corresponding
maximum likelihood estimators. The expected information matrix then follows by
taking expectations of the above components (multiplied by n−1).

Considering: as in Bolfarine et al. (2012):

akj = E{zk(φ(z)/Φ(|z|))j}, a∗kj = E{|z|k(φ(z)/Φ(|z|))j},

a∗∗kj = E{sgn(z)zk(φ(z)/Φ(|z|))j}, a1kj = E{zk(φ(λz)/Φ(λz))j},

the elements of the expected information matrix are given by
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iβ′β =
1 + (α− 1)(a02 − a∗∗11) + λ2(βa111 + a102)

σ2
X′X, iλλ = λa131 + a122

iσβ =
2a10 + (α− 1) (a∗∗01 − a∗∗21 − a12) + λ(λ2a121 + λa112 − a101)

σ2
X′1,

iλβ =
a101 − λ(λa121 + a112)

σ
X′1, iλσ =

a111

σ
− λ(λa131 + λa122)

σ2

iσσ = − 1

σ2
+

3

σ2
a20 +

α− 1

σ2
[a∗31 + a22 − 2a∗11] +

λ

σ2
[λ2a131 + λa122 − 2a111]

iαβ = − 1

σ
a∗∗01X

′1, iασ =
1

σ
a∗11, iαλ = 0, iαα = α−2 − 2α(2α − 1)−2(ln 2)2.

4.3. Bimodal Symmetric Case

The bimodal symmetric regression model is the one where the errors follow the
probability density function and is given by

ϕ(εi; 0, σ, α, 0) =
αcα
σ
φ
(εi
σ

){
Φ
(∣∣∣εi
σ

∣∣∣)}α−1

,

for i = 1, 2, . . . , n. We use the notation εi ∼ BPN(0, σ, α). Bolfarine et al. (2012)
demonstrate that this density is symmetric bimodal for α > 1 and unimodal
otherwise. We note that this model is a particular case of the ABPN model and
take the value λ = 0. Therefore, the score functions and information matrix for
the parameter vector θ1 = (β′, σ, α)′ can be obtained from the previously obtained
ones for the asymmetric regression model, which is followed by making λ = 0 in
the first derivatives with respect to the parameter β, σ and α and similarly for
the second derivatives with respect to the vector θ1.

For α = 1, we have ϕ(εi; 0, σ, 1) = φ (εi/σ) /σ, the density function of the
location-scale normal density, the information matrix is reduced to

I(θ1) =

 1
σ2X

′X 0p+1 0p+1

0′p+1
2
σ2

0.2063
σ

0′p+1
0.2063
σ 1− 2(ln 2)2


with determinant |I(θ1)| > 0, so that the information matrix is nonsingular for
the special case of the symmetric normal distribution.

The upper 2 × 2 submatrix of I(θ1)−1 corresponds to the information ma-
trix for the normal distribution. In the next section, we discuss consistency and
asymptotic normality for the maximum likelihood estimators. As is well-known,
the asymptotic variance is the inverse of the Fisher information above.
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4.4. Large Sample Distribution of the MLE for the ABPN
Model

As mentioned above, the information matrix for the parameter vector

θ = (β′, σ, α, λ′)′ = (θ′1, λ)′

for the bimodal regression model is obtained by finding the expectations for the
observed information matrix. These expectations are not available in closed form
and have to be obtained numerically.

In the particular case where α = 1, λ = 0 so that ϕ(εi; 0, σ, 1, 0) = φ (εi/σ) /σ,
the location-scale normal density function, the information matrix becomes

I(θ) =

(
I(θ1) I(θ1, λ)

I ′(θ1, λ) 2
π

)
.

The determinant is given by |I(θ)| 6= 0, which is then nonsingular at the vicinity of
symmetry, that is, for the normal case, so that the usual

√
n-asymptotic behaviour

holds for the MLEs. Moreover, The upper 2× 2 submatrix of I(θ1)−1 corresponds
to the information matrix for the normal distribution. For large n,

θ̂
A−→ Np+4(θ, I(θ)−1),

and hence, θ̂ is consistent and asymptotically normal with asymptotic covariance
matrix I(θ)−1. For this to be the case, regularity conditions must be satisfied.

We have shown that the Fisher information matrix is not singular, and, more-
over, since second derivatives exist and are continuous with respect to each one of
the parameters σ, λ, α, and βj for j = 1, 2, · · · , p+ 1 it is possible to differentiate
under the integral sign. This shows that part of the regularity conditions for large
sample normality of the maximum likelihood estimators are satisfied. To verify
the remaining conditions, following Lin & Stoyanov (2009), for y > 0 and λ > 0,
lim infy→∞ Φ(λy) ≥ 1/2 so that 1

2
φ(λy)
Φ(λy) ≤ φ(λy) → 0 as y → ∞, and for λ < 0,

log(Φ(λy)) ≈ − 1
2 (λy)2 for y → ∞. From here it follows that Φ(λy) ≈ e−

1
2 (λy)2 ,

leading to φ(λy)
Φ(λy) ≈ (2π)−1/2 as y → ∞. On the other hand, it is well known that

the failure rate of the standard normal distribution h(y) satisfies φ(y)
1−Φ(y) > y, ∀y.

Therefore, the third derivatives with respect to the model parameters are bounded
by an integrable function. Finally, since the distribution support is independent
of model parameters, we have shown that the regularity conditions (see regular-
ity conditions in Lehmann & Casella., (1998) and Casella & Berger., 2002) are
satisfied. Thus, we have the following

Proposition 1. If θ̂ is the MLE of θ, then

θ̂
A→ Np+4(θ, I(θ)−1),

resulting that the asymptotic variance of the MLE θ̂ is the inverse of the Fisher
information matrix I(θ), which can be denoted by Σ(θ) = I(θ)−1.
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5. Numerical Results

5.1. Simulation Study

Results of two simulation studies, one for the BPN model and the other for
the ABPN model, report properties such as empirical bias and mean squared error
for the maximum likelihood estimators. We consider regression models with errors
BPN(0, σ, α) and ABPN(0, σ, α, λ). For each model, 5000 samples of sizes n = 50,
150, 300 and 1000 were generated from the BPN and ABPN models, with parame-
ter values given by β0 = 0.75, β1 = 2.25, σ = 1 and α = 0.25, 0.75, 1.75 and 3.5.
For the ABPN model we took λ = 1.0 and 3.0

Estimators performances were evaluated by computing the absolute value of
empirical bias (|Bias| = empirical |bias| value) and the square root of the empirical
mean squared error (

√
MSE). Results are presented in Tables 1, 2, and 3. Results

show that the absolute value of the bias and the root of the mean square error of
the maximum verisimilitude estimators of the model parameters decrease as the
sample sizes are increased, ie estimators are approximately unbiased, (see Tables
1, 2, and 3). This indicates a good performance of the MLE for moderate sample
sizes. Small bias for large samples is expected given the asymptotic convergence
of the MLE discussed above. For small and moderate sample sizes, it can also be
depicted from the simulations that the bias β0 is small under the BPN model.

Table 1: Simulations for the BPN regression model with 5000 iterations to α = 0.25,
0.75, 1.75, 3.5; σ = 1.0; β0 = 0.75 and β1 = 2.25, with sample sizes n = 50,
150, 300, and 1000 respectively.

β̂0 β̂1 σ̂ α̂

α n |Bias|
√
MSE |Bias|

√
MSE |Bias|

√
MSE |Bias|

√
MSE

50 0.0074 0.3302 0.0134 0.5195 0.1294 0.1323 1.1796 1.0744
0.25 150 0.0043 0.1583 0.0073 0.2673 0.0557 0.0831 0.4570 0.5542

300 0.0015 0.1018 0.0023 0.1754 0.0315 0.0595 0.2629 0.3859
1000 0.0013 0.0598 0.0019 0.1010 0.0095 0.0351 0.0758 0.2257

50 0.0016 0.3600 0.0099 0.6388 0.1053 0.1263 1.0000 1.0886
0.75 150 0.0010 0.1590 0.0014 0.2784 0.0374 0.0807 0.3200 0.5743

300 0.0006 0.1141 0.0003 0.2055 0.0191 0.0593 0.1589 0.4130
1000 0.0003 0.0608 0.0003 0.1045 0.0055 0.0347 0.0430 0.2346

50 0.0067 0.3324 0.0128 0.5201 0.0669 0.1232 0.7070 1.1659
1.75 150 0.0014 0.1738 0.0021 0.2891 0.0162 0.0753 0.1475 0.6376

300 0.0012 0.1228 0.0019 0.2106 0.0073 0.0537 0.0617 0.4495
1000 0.0003 0.0662 0.0007 0.116 0.002 0.0300 0.0161 0.2400

50 0.0041 0.2574 0.0135 0.4795 0.0384 0.1041 0.5292 1.2747
3.5 150 0.0027 0.1482 0.0075 0.2454 0.0124 0.0605 0.1737 0.6816

300 0.0025 0.1020 0.0034 0.1795 0.0057 0.0430 0.0729 0.4601
1000 0.0004 0.0563 0.0013 0.0987 0.0020 0.0238 0.0211 0.2473
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Table 2: Simulations for the ABPN regression model with 5000 iterations for α = 0.25,
0.75, 1.75, 3.5; σ = 1.0; β0 = 0.75, β1 = 2.25 and λ = 1.0, with sample sizes
n = 50, 150, 300, and 1000 respectively.

α = 0.25 α = 0.75 α = 1.75 α = 3.5

α n |Bias|
√
MSE |Bias|

√
MSE |Bias|

√
MSE |Bias|

√
MSE

50 0.0982 0.3843 0.0474 0.3932 0.0174 0.3567 0.0125 0.2776

β̂0 150 0.0941 0.3048 0.0459 0.3121 0.0123 0.2532 0.0020 0.1657

300 0.0442 0.234 0.0477 0.2587 0.0074 0.2027 0.0012 0.1236

1000 0.0394 0.1348 0.0436 0.1729 0.0074 0.2027 0.0011 0.0655

50 0.0053 0.3807 0.0186 0.4251 0.0088 0.4308 0.0026 0.3776

β̂1 150 0.0042 0.2289 0.0021 0.2403 0.0049 0.2299 0.0015 0.2149

300 0.0027 0.1631 0.0019 0.1670 0.0004 0.1691 0.0004 0.1570

1000 0.0002 0.0815 0.0014 0.0894 0.0001 0.0929 0.0002 0.0848

50 0.0862 0.2314 0.0906 0.2161 0.0629 0.1787 0.0492 0.1331

σ̂ 150 0.0149 0.1504 0.0236 0.1533 0.0209 0.1203 0.0165 0.0813

300 0.0096 0.1038 0.0026 0.1175 0.0159 0.0915 0.0073 0.0576

1000 0.0073 0.0538 0.0107 0.0700 0.0057 0.0555 0.0022 0.0308

50 0.8782 3.3055 0.4588 2.4702 0.1659 1.3517 0.0139 0.4590

λ̂ 150 0.4562 1.2525 0.2456 1.1182 0.0451 0.4810 0.0047 0.2400

300 0.3315 0.7103 0.1639 0.6036 0.0003 0.3563 0.0025 0.1680

1000 0.1152 0.3535 0.1199 0.3844 0.0050 0.2320 0.0003 0.0893

50 1.4899 1.1151 1.3681 1.0916 1.0502 1.1270 0.7574 1.3624

α̂ 150 0.8874 0.7949 0.7259 0.7137 0.4250 0.6799 0.2532 0.7353

300 0.5649 0.6921 0.4705 0.6037 0.2213 0.5051 0.1205 0.5119

1000 0.1762 0.4440 0.2092 0.4476 0.0702 0.3069 0.0353 0.2707

5.2. Numerical Illustration

The following illustration is based on a data set including 202 Australian ath-
letes, which can be downloaded at the following directory http://azzalini.stat.
unipd.it/SN/. The data set is related to certain body features such as height,
weight, and body mass index, among others, for all 202 athletes.

The linear model considered is

Bfatk = β0 + β1bmik + β2lbmk + εk,

for k = 1, 2, . . . , 202, where Bfatk is the body fat percentage for the k-th athlete,
and the covariates bmik and lbmk are the body mass index and lean body mass,
respectively, for the k-th athlete.

We start by fitting the regression model under the assumption that the error
term follows the ordinary normal model. Summary statistics are shown seen in
Table 4, in which quantities

√
b1 and b2 represent sample asymmetry and kurtosis

coefficients. As well as in Figure 1(a), there is in indication that the normal
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Table 3: Simulations for the ABPN regression model with 5000 iterations for α = 0.25,
0.75, 1.75, 3.5; σ = 1.0; β0 = 0.75, β1 = 2.25 and λ = 3.0, with sample sizes
n = 50, 150, 300, and 1000 respectively.

α = 0.25 α = 0.75 α = 1.75 α = 3.5

α n |Bias|
√
MSE |Bias|

√
MSE |Bias|

√
MSE |Bias|

√
MSE

50 0.1563 0.2428 0.0291 0.2262 0.0047 0.2321 0.0415 0.2289
β̂0 150 0.1131 0.1439 0.0848 0.1519 0.0293 0.1583 0.0061 0.1564

300 0.1024 0.123 0.0861 0.1307 0.0279 0.1306 0.0056 0.1329
1000 0.0533 0.0822 0.054 0.0959 0.0102 0.0964 0.0011 0.0839
50 0.0014 0.3422 0.0037 0.2916 0.0035 0.3106 0.0016 0.3266

β̂1 150 0.0001 0.1604 0.0005 0.1527 0.0015 0.1790 0.0019 0.1871
300 0.0002 0.1089 0.0039 0.1160 0.0038 0.1287 0.0010 0.1323

1000 0.0001 0.0578 0.0001 0.0614 0.0003 0.0683 0.0012 0.0707
50 0.0633 0.1732 0.0696 0.1632 0.0546 0.1471 0.0417 0.1263

σ̂ 150 0.0189 0.0890 0.0166 0.0891 0.0132 0.0845 0.0123 0.0722
300 0.0127 0.0634 0.0089 0.0609 0.0071 0.0593 0.0079 0.0526

1000 0.0062 0.0354 0.0034 0.0328 0.0013 0.0319 0.0029 0.0284
50 1.9560 3.9919 1.8591 3.1235 0.5809 2.2944 0.3756 1.8389

λ̂ 150 2.0091 3.4448 1.5292 3.0733 0.6038 1.9650 0.2244 1.1408
300 1.3391 2.2723 1.0631 2.1654 0.3976 1.5633 0.0730 0.7056

1000 0.4955 0.7335 0.4657 0.7776 0.1183 0.6815 0.0132 0.3613
50 1.0601 1.0039 0.9117 1.0110 0.6094 1.1338 0.2134 1.3831

α̂ 150 1.0673 0.9535 0.8377 0.8987 0.4103 0.8430 0.1443 0.9856
300 0.9233 0.9153 0.7451 0.8720 0.3270 0.7984 0.0795 0.8308

1000 0.4613 0.6465 0.4533 0.7030 0.1156 0.6352 0.0356 0.5782

symmetric model may not be the most adequate and that an asymmetric model
such as the PN or its asymmetrical bimodal extension, namely the model ABPN,
can present a better fit.

Table 4: Descriptive statistics for the data set.

n e se
√
b1 b2

202 0.0000 0.8559 −0.5920 2.5484

Additionally, the Shapiro-Wilk test for normality, with p-values given in paren-
thesis, is given by SW = 0.9811(0.008), giving then indication that model errors
are not normally distributed. Thus, we fitted the regressions based on the PN
and ABPN models. In order to future investigate the model fit, we computed the
scaled residuals ek = (yk − x′kβ̂)/σ̂ for PN and ABPN linear Models.

Figures 1(b) and (c) reveal the fit of regression models PN and ABPN. We
found that the PN model fits the data better than the ordinary normal regression
model. Moreover the ABPN model presents a better fit than the PN model. The
main idea is that the ABPN model is able to capture asymmetry and bimodality
and the others are not.

The models above were fit using software R nonlinear function nlm program
from (see R Development Core Team 2015).
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Figure 1: (a) Histogram for the body fat percentage. Histogram and model fitted resi-
duals under: (b) PN model and (c) ABPN model.

Moreover, the results in Table 6 present estimates, with standard errors in
parenthesis, for the model parameters. It also reveals that, according to the ABPN
regression model, the percentage (%) of body fat depends on the bmi and lbm
quantities the athletes in the sample.

The model selection approaches considered are the BIC, written as BIC =
−2`(·) + k ln(n) and CAIC, written as CAIC = −2`(·) + k(1 + ln(n)), where k
is the number of unknown parameters for the model under study. According to
either the BIC or CAIC scores (see Table 6), the ABPN linear model presents
the best fit when compared to the normal and PN linear models. For the sake of
comparison, we also fitted the regression model with the error terms distributed as
a mixture of two normal distributions. Parameter estimates were obtained using
function mixreg in R. These are shown in Table 5.

Table 5: Descriptive statistics for the data set.

j β̂j0 β̂j1 β̂j2 σ̂j p̂j
1 −0.825 −0.194 1.011 2.923 0.344

2 5.280 −0.509 1.862 15.961 0.656

Table 6: Parameter estimates (SD) for Normal, Power Normal, and ABPN models.

Linear model Normal PN ABPN
β̂0 –0.546(2.417) –10.745(3.279) 0.920(1.620)
β̂∗
0 -1.586(2.468)
β̂1 1.965(0.148) 1.902(0.143) 1.789(0.096)
β̂2 –0.479(0.032) –0.459(0.033) –0.400(0.021)
σ̂ 4.205(0.209) 6.907(0.681) 3.953(0.223)
α̂ 8.929(3.859) 3.698(0.588)
λ̂ –0.598(0.111)

BIC 1174.69 1173.55 1170.05
CAIC 1178.69 1178.55 1176.05
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We obtained BIC = 1170.17 and CAIC = 1179.17, meaning that, according
to the BIC and CAIC criteria, the regression model ABPN fits the data better
than the mixture of two normal distributions.

Following Therneau, Grambsch & Fleming (1990), we can adapt the deviance
component residual for the ABPN model with no censored data by considering

rMi
= 1 + ln

(
ŜABPN (y)

)
, i = 1, 2, . . . , n, (7)

where SABPN (y) is the ML estimate of the reliability function of the ABPN model.
Therneau et al. (1990) proposed the deviance component residual as a trans-

formation of the martingale type residual so that the deviance component residual
for noncensored data can be taken as

rMTi
= sgn(rMi

) {−2 [rMi
+ ln(1− rMi

)]}1/2 , i = 1, 2, . . . , n. (8)

We use the residual rMTi
as a residual type martingale, given that they are sym-

metrically distributed around zero. Furthermore, to evaluate the global influence
of each observation on the parameter estimation, Cook’s distance was computed
by removing one observation at a certain time and evaluating estimation changes
for parameters β = (β, σ, α, λ) . This distance is computed as

GDCi (β) =
1

(p+ 1) + 3

[(
θ̂ − θ̂(i)

)′
Σ̂−1

θ̂

(
θ̂ − θ̂(i)

)]
, i = 1, . . . , n (9)

where p + 1 is the number of regression coefficients in the regression model, Σ̂
θ̂

is an estimator for the variance-covariance matrix of θ̂ and θ̂i is the maximum
likelihood estimator β after removing the i-th observation.

Figure 2(a) and (b) presents Cook’s distances values of the residuals versus
fitted values from which it can be depicted that (a) there are two influential obser-
vations, namely #56 and #133, and, moreover, (b) for some observations Cook’s
distances fall a little outside the bands −2 and 2. This shows that no influential
observations are present in the data.

The impact is measured by the relative changes in the estimates, represented
as

RCθj =

∣∣∣∣∣ θ̂j − θ̂j(I)θ̂j

∣∣∣∣∣ ∗ 100, (10)

where θ̂j denotes the maximum likelihood estimate for the parameter θj includ-
ing all observations, and θ̂j(I) denotes the estimate of the same parameter while
deleting the influential observations.
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Table 7 depicts the relative changes on the parameter estimates.

Table 7: Relative change, RC% for model parameters.

Index β̂0 β̂1 β̂2 σ̂ λ̂ α̂

{56} 0.3560 0.0184 0.0204 0.0154 0.0238 0.0331

{133} 0.1484 0.0292 0.0129 0.0032 0.0448 0.0075

{56, 133} 0.5097 0.0112 0.0050 0.0177 0.0162 0.0618

Table 7 indicates that no observation exerts a great influence on the maximum
likelihood estimates. This corroborates the results that are presented above.

0 50 100 150 200

0.
00

0.
02

0.
04

0.
06

0.
08

Index

G
C

D

56

133

(a)

10 15 20 25

−
2

−
1

0
1

2

linear predictor

 d
ev

ia
nc

e 
co

m
po

ne
nt

 r
es

id
ua

l

(b)

Figure 2: Plot for the ABPN model (a) Index versus GCD and (b) deviance component
residual versus predictor.

Figures 3(a) and (b) present the QQ-plot with envelops for the deviance com-
ponent residual for the ABPN models. This also indicates a good fit for the ABPN
linear model and the empirical cdf for the scaled residuals under the ABPN model
(solid line). The dotted line corresponds to the cfd for the ABPN model.
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Figure 3: (a) QQ-plot with envelope under the ABPN model and (c) cdf for the ABPN
model.

It can be noticed that envelops for the ABPN model also indicates the presence
of outlying (influential) observations under the ABPN regression model. Figures
4(a) and (b) presents the QQ-plot with envelops for the deviance component resid-
ual for the normal and PN regression models.
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Figure 4: QQ-plot with envelopes (a) normal model and (b) PN model.
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6. Final Discussion

In this paper we extended the model in Bolfarine et al. (2012) for the case of
regression models. Emphasis was placed on the asymmetric bimodal power-normal
(ABPN) distribution. The skew-normal model (Azzalini 1985) is a special case.
Estimations were made by implementing the maximum likelihood approach. Large
sample estimates were obtained by using the observed information matrix (minus
the inverse of the estimated Hessian matrix). Results from a real data application
for the linear model situation illustrates the usefulness of the model developed.
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