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In this paper, we study how to determine the unknown functions for the scalar tensor
model f(R, φ) where the Ricci scalar is allowed to appear in a nonlinear way. The
methods followed to determine these functions are: the matter collineation approach,
the Lie group method and the Lagrangian collineation approach. We find several exact
analytical solutions for a cosmological model with a FRW metric. We determine that
some of the results are also valid for some anisotropic metric (e.g. the self-similar ones).
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1. Introduction

The physical and mathematical importance of the modified gravitational models has
been recently pointed out by several authors (see for instance [26, 10, 1] and [14]),
since this kind of theories explain in a better way the dynamics of the very early uni-
verse as well as its current acceleration. Obviously, although such class of theories is
more general than the usual Jordan–Brans–Dicke models, they may be generalized
in order to incorporate corrections to the Ricci scalar term as the f(R) models (see
for example [6]). Therefore, the purpose of this paper is to study the generalized
f(R, φ) theories ([38, 17, 25, 2]), where, for example, as subclasses result, the f(R)
models (with φ = 0) and the generalized scalar tensor theories with f = F (φ)R are
studied in [3]. In particular, we are interested in studying the form that the differ-
ent quantities may take in order that the field equations (FE) may be integrated.
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Therefore, it would be necessary to have a fundamental method according to which
the form (or forms) of the potential as well as the other physical quantities could
be fixed, and if it is possible, to calculate exact solutions to the proposed models.
We have several geometric methods, such as the matter collineation (self-similar
solutions), Lie groups and the Lagrangian collineation approach.

The study of self-similar (SS) models is quite important since, as it has been
pointed out by Rosquist and Jantzen [33], they correspond to equilibrium points,
and therefore a large class of orthogonal spatially homogeneous models is asymp-
totically SS at the initial singularity and approximated by exact perfect fluid (PF)
or vacuum SS power law models. Exact SS power-law models can also approximate
general Bianchi models at intermediate stages of their evolution [11]. From the geo-
metrical point of view, self-similarity is defined by the existence of a homothetic
vector field H in the spacetime, which satisfies the equation LHgµν = 2αgµν [8].
The geometry and physics at different points on an integral curve of a homoth-
etic vector field (HVF) differ only by a change in the overall length scale, and in
particular, any dimensionless scalar will be constant along the integral curves.

The existence of SS solutions (which implies that the scale factor follows a power-
law solution) is just a manifestation of scaling symmetries. It is opportune to point
out that scaling is not the most general form of symmetry. Symmetry methods are
arguably the most systematic way of dealing with exact solutions of differential
equations (partial as well as ordinary). In recent years, they have been successfully
applied to various fields, such as gas dynamics, fluid mechanics, general relativity,
etc. Among symmetries of a differential equation, those forming a one-parameter
group of transformations can be determined algorithmically through the so-called
Lie algorithm. Quite often, as in the f(R, φ) cosmological models, the FE of the
model contain arbitrary functions whose functional forms cannot be fixed by any
known laws. Since having symmetries is just a generic property, i.e. all equations do
not admit symmetries, then symmetries can be used to determine such functions.
This is known in the literature as group modeling [27]. The advantage of using
such technique is that it is systematic. Therefore, by studying the forms of the
unknown functions for which the FE admit symmetries, it is possible to uncover
new integrable models.

Another method for determining the physical quantities is the use of the
Lagrangian collineation approach (Noether-like symmetries). The idea of using
Noether symmetries as a cosmological tool is not new in this kind of studies, for
example, in [32], the authors proposed that the Noether point symmetry approach
can be used as a selection rule for determining the form of the potential, that is,
they take into account the geometry of the FE as a selection criterion, in order to
fix the form of the potential. There exists a massive set of works on symmetries in
scalar tensor theories so we can only cite a few of them. In [15], the author studied
Noether symmetry of the hyperextended scalar–tensor theory for the FLRW mod-
els. In [28], the authors studied Scalar-Tensor cosmological models through Noether
symmetries since the presence of symmetries implies that the dynamical system
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becomes integrable and then they can compute cosmological analytical solutions
for specific functional forms of coupling and potential functions selected by the
Noether Approach. Other recents works are [34, 29, 24]. Dynamically speaking,
Noether symmetries are considered to play a central role in physical problems
because they provide first integrals which can be utilized in order to simplify a given
system of differential equations and thus to determine the integrability of the sys-
tem. There are several approaches to study these symmetries; the geometrical one
(see for instance [7] and the references therein), the dynamical Noether symmetry
approach based on the Lie group method ([23] and [22]), and the developed in [37, 9].
In this paper, we shall follow the method proposed by Capozziello et al. in [7].

Therefore, the aim of this paper is to study f(R, φ) cosmological models by using
several symmetry methods in order to determine the form of the physical quantities
as for example, the potential as well as the other unknown functions that appear in
the FE. In particular, we are interested in studying whether SS solutions exist and
how each physical quantity must behave in order that the FE admits such class of
solutions. In the same way, we formalize the use of power-law solutions (less restric-
tive than the SS ones) by studying the wave equation for the scalar field through
the Lie group method. We also show how to use this approach in order to generate
more solutions. Furthermore, we study the existence of Noether, like symmetries in
order to find exact solutions in the framework of the flat FRW geometry.

The paper is organized as follows. In Sec. 2, we introduce the model and outline
the FE for the model. In Sec. 3, we determine the exact form that each physical
quantity may take in order that the FE admits exact SS solutions through the
matter collineation approach. In Sec. 4, we study the wave equation for the scalar
field through the Lie group method. We show how to generate several solutions
by using this approach. Section 5 is devoted to studying the model through the
Lagrangian collineation approach. We end up in Sec. 6 with a brief conclusion and
discussion.

2. The Model

We consider a class of scalar-tensor theories of gravity represented by the action [30]

S =
∫
d4x

√−g
[
1
2
f(φ,R) − 1

2
Z(φ)φ;µφ;µ − U(φ) + Lm

]
, (1)

where R is the Ricci scalar and Lm is a classical matter Lagrangian including also
minimally coupled scalar fields, if any. We disregard any possible coupling of our
scalar field with ordinary matter, radiation and dark matter [12, 31].

We assume a standard Friedman–Robertson–Walker (FRW) form for the unper-
turbed background metric and we restrict ourselves to a spatially flat universe,
that is,

ds2 = −dt2 + a2(t)
3∑

i=1

(dxi)2, (2)
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so we are using the signature (−,+,+,+) and where an expression that will be
useful in the following is that of the Ricci scalar,

R = 6(Ḣ + 2H2), H = ȧ/a. (3)

We are using units where 8πG = c ≡ 1, and we will choose the relation Gµν = Tµν

to identify Tµν . Here Gµν is the Einstein tensor, and all the other contributions
have been absorbed in Tµν ; as noted in ([19–21]), and therefore, if one writes the
gravitational field equation in this form, then Tµν can be treated as an effective
stress–energy tensor, which allows to use the standard Einstein equations by simply
replacing the fluid quantities with the effective ones. By defining F ≡ ∂f/∂R, the
gravitational FE derived by the action (1) are

FGµν = Tm
µν + Z

(
φ,µφ,ν − 1

2
gµνφ,σφ

,σ

)

+F,µ;ν − gµν�F − Ugµν +
1
2
(f − FR)gµν , (4)

and the wave equation (see [20])

2Z�φ+ Z,φφ
,σφ,σ + f,φ − 2U,φ = 0. (5)

In this paper, we consider that the matter content is described by a PF whose
energy–momentum tensor is defined by

Tm
µν = (ρ+ p)uµuν + pgµν , (6)

where ρ is the energy density of the fluid, p the pressure and they are related by
the equation of state p = γρ, (γ ∈ (−1, 1]), and uµ = (1, 0, 0, 0) is the 4-velocity.

Equations for the background are

3FH2 = ρ+
Z

2
φ̇2 − 3HḞ +

1
2
(RF − f) + U, (7)

F (2Ḣ + 3H2) = −p− Z

2
φ̇2 − 2HḞ − F̈ +

1
2
(RF − f) + U, (8)

2Z(φ̈+ 3Hφ̇) = fφ − Zφφ̇
2 − 2Uφ, (9)

furthermore, the continuity equations for the individual fluid components are not
directly affected by the changes in the gravitational field equation, and for the i-th
component

ρ̇i + 3H(ρi + pi) = 0. (10)

2.1. Simplifying assumptions

We may suppose that the function f(φ,R) can be split in the following way

f(φ,R) = h(R)g(φ). (11)
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3. Matter Collineation Approach

Our purpose will be to determine the exact form that must be followed by each
physical quantity in order that the FE admit SS solutions. We shall use the tactic of
the matter collineations approach, which guarantees us the existence of SS solutions
following the method developed in a previous paper (see [3]).

Self-similarity is defined by the existence of a HVF V in the spacetime ([5, 13]),
which satisfies

LV gµν = 2αgµν , (12)

where gµν is the metric tensor, LV denotes Lie differentiation along the vector field
V ∈ X(M) and α is a constant (see for general reviews [8, 16]). If we consider the
Einstein equations Gµν = 8πGTµν , where Tµν is an effective stress–energy tensor,
then if the spacetime is homothetic, the energy–momentum tensor of the matter
fields must satisfy LV Tµν = 0. Nevertheless, in this work, we are not interested
in finding the set of vector fields V ∈ X(M), that verify such equation, otherwise,
knowing that the HVF H (see for example [8]), that is, LHgµν = 2gµν , then H
is also a matter collineation, i.e. LHTµν = 0. We use this fact to determine the
behavior of the main physical quantities in order that the FE admit SS solutions
(see [16]).

Therefore, we calculate

LHT eff
µν = 0, (13)

where H is a HVF i.e. it verifies the equation: LHgµν = 2gµν, for some metric and
where T eff

µν is the effective stress–energy tensor. For this purpose, we have shown

in [3] that it is enough to calculate L(i)
H Tµν = 0, for each component of the stress–

energy tensor. We are considering a FRW metric, thus the HVF yields (see for
instance [18])

H = t∂t + (1 − a1)(x∂x + y∂y + z∂z), (14)

where a1 ∈ R, is a numerical constant, note that the scale factor must behaves as,
a(t) = ta1 , a1 ∈ R

+. We may do such simplification because, as we have shown
in [3], all the physical quantities are homogeneous, that is, they only depend on
time t, then, the unique equation of L(i)

H Tµν = 0, that is interesting for us is the
one corresponding to the temporal coordinate t∂t.

We start by defining T eff
µν as follows:

T eff
µν = MTµν + ZTµν + φTµν + UTµν + RTµν , (15)

where

MTµν =
Tµν

F
=

1
F

((ρ+ p)uµuν + pgµν), (16)

ZTµν =
Z

F

(
φ,µφ,ν − 1

2
gµνφ,σφ

,σ

)
, (17)
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φTµν =
1
F

(F,µ;ν − gµν�F ), (18)

UTµν = −U
F
gµν , (19)

RTµν =
1

2F
(f − FR)gµν =

1
2hRg

(hg − hRgR)gµν =
1
2
(hh−1

R −R)gµν , (20)

since (it does not depend on φ) note that f = hg, and F = hRg.

Then LH(MT ) = 0 yields

−gφφ̇

g
− hRRṘ

hR
+
ρ̇

ρ
= −2t−1, (21)

with φ̇ = dφ/dt, that is, a dot means derivative with respect to t, then integrating
it, we find the relationship between the quantities

ρ(hRg)−1 = t−2. (22)

In the same way, from LH(ZT ) = 0, we get

Zφφ̇

Z
− gφφ̇

g
− hRRṘ

hR
+ 2

φ̈

φ̇
= −2t−1, (23)

then

Zφ̇2(hRg)−1 = t−2. (24)

Now UTµν = Ugµν/F, by performing the same calculations, we conclude that

Uφφ̇

U
− gφφ̇

g
− hRRṘ

hR
= −2t−1, U(hRg)−1 = t−2. (25)

With regard to the component RTµν : LH(RTµν) = LH(1
2 (hh−1

R − R)gµν) = 0.
The first term is: LH(T f

00) = 0, that we may write in the following form

−thRRh
−1
R Ṙh = 2hRR− 2h, (26)

and taking into account the fact that tṘ = −2R (in the framework of SS solutions
and for the FRW metric), then the equation yields

hRR =
h2

R

h
− hR

R
, (27)

whose solution is

h = C1R
r, r ∈ R, (28)

where C1 is an integrating constant. With the other components, LH(RT1i) = 0,
we only obtain restriction on the scale factors, but we already know how it behaves
from the HVF. Therefore, we have obtained the following result

h = C1R
r r ∈ R, R = R0t

−2, (29)

for the FRW metric R0 = 6a1(2a1 − 1), since a(t) = ta1 , a1 ∈ R
+.
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To end, and taking into account the previous results, we go next to calculate
LH(φTµν) = 0, where φTµν = (F,µ;ν−gµν�F )/F. By calculating the first component
of this equation, we get

gφφφ̇

gφ
− gφφ̇

g
+
φ̈

φ̇
+

1
t

= 0. (30)

This ODE admits several solutions. For example, we may assume that g follows a
power law solution, g = g0φ

n, then

g = g0φ
n, φ = φ0t

m, n,m ∈ R. (31)

In the second place, by solving the above ODE for g and φ, we obtain

g = g0e
C1φ, φ = φ0 ln t, g0, φ0, C1 ∈ R, (32)

both solutions, Eqs. (31) and (32) are compatible with the power-law solution for
the scale factor.

Now, if we consider the expression from the matter conservation: ρ= ρ0

a−3(γ+1) = ρ0t
−3a1(γ+1), and taking into account that ρg−1

≈ t−2r, then we
get the following relationships. For the solution (31) g = tl, with l = mn, then
l = 2r − 3a1(γ + 1), and therefore

ρ(hRg)−1 = t−2, ρ ≈ tB, B = −3a1(γ + 1),

Zφ̇2(hRg)−1 = t−2, Z ≈ tA, Z ≈ φA/m, A = 2(1 −m) +B,

U(hRg)−1 = t−2, U ≈ tB, U ≈ φB/m,

(33)

with the restriction l− 2r < 0, in order to obtain an energy density and a potential
decreasing on time. For the solution (32) g = g0t

C1φ0 , then C1φ0 = 2r−3a1(γ+1),
and therefore,

ρ(hRg)−1 = t−2, ρ ≈ t−A, A = 3a1(γ + 1),

Zφ̇2(hRg)−1 = t−2, Z ≈ t2−A, Z ≈ e(2−A)φ,

U(hRg)−1 = t−2, U ≈ t−A, U ≈ e−Aφ,

(34)

with the restriction 3a1(γ + 1) = A > 0, in order to obtain an energy density and
a potential decreasing on time.

Remark 1. Relationships from Dimensional Analysis (DA). From the FE (7)

3H2 =
ρ

F
+

Z

2F
φ̇2 − 3H

Ḟ

F
+

1
2F

(RF − f) +
U

F
,

with F = hRg, and Ḟ = hRRṘg + hRφ̇gφ, we note that [H2] = T−2, then we have

[H2] = T−2 = [ρF−1] = [ZF−1φ̇2] = [HḞF−1] = [(RF − f)F−1] = [UF−1],

so developing the brackets, we get

ρ(hRg)−1 = t−2, Zφ̇2(hRg)−1 = t−2, U(hRg)−1 = t−2,
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that is, we have obtained the same relationships (as it is expected) but in a trivial
way. Nevertheless, following this procedure, we are not able to determine the form
of each function as in Eqs. (33) and (34).

4. Lie Groups Approach

We have proved how each physical quantity must behave under the hypothesis of
self-similarity. In this section, we shall follow another approach, which allows us
to find the same and more solutions. We study through the Lie group method the
wave equation for the scalar function

2Z(φ̈+ θφ̇) = fφ − Zφφ̇
2 − 2Uφ, (35)

that is, Eq. (35) is of the general form φ̈ = ψ(t, φ, φ̇).
Roughly speaking, a symmetry, X = ξ(t, φ)∂t + η(t, φ)∂φ, of a differential equa-

tion is an invertible transformation that leaves it form-invariant. By applying the
standard Lie procedure (see for instance [4, 36, 22]), we need to solve the fol-
lowing overdetermined system of linear partial differential equations for η and ξ

(from the extended infinitesimal or prolonged transformations), which allows us
to determine the set of the symmetries admitted by Eq. (35). A vector field X,

X = ξ(t, φ)∂t + η(t, φ)∂φ, is a symmetry of (35) if

−ξψt − ηψφ + ηtt + (2ηtφ − ξtt)φ̇+ (ηφφ − 2ξtφ)φ̇2 − ξφφφ̇
3

+ (ηφ − 2ξt − 3φ̇ξφ)ψ − [ηt + (ηφ − ξt)φ̇ − φ̇2ξφ]ψφ̇ = 0. (36)

Thus, our approach consists in imposing a particular symmetry and to deduce
the exact form that acquires the unknown functions, that is, φ, f, Z and U , by
solving the system of PDE (36). The imposed symmetry induces a change of vari-
ables which usually reduces Eq. (35) to an integrable ODE. However, sometimes,
it is not possible to find a solution of such ODE. For this reason, the knowledge of
one symmetry X might suggests the form of a particular solution as an invariant
of the operator X , i.e. a solution of dt/ξ(t, φ) = dφ/η(t, φ). This particular solution
is known as an invariant solution (generalization of similarity solution).

Therefore, we study Eq. (35), and rewrite it as follows:

φ̈ = −3Hφ̇+
fφ

2Z
− Zφ

2Z
φ̇2 − Uφ

Z
, (37)

we use the notation φ̇ = dφ/dt, Uφ = dU/dφ, etc.
By studying Eq. (37) under the assumption f(φ,R) = h(R)g(φ) = h(t)g(φ), we

find (following the standard Lie procedure) the system of PDE

Zφξφ − 2Zξφφ = 0, (38)

(ZZφφ − Z2
φ)η + ZZφηφ + 12Z2Hξφ + 2Z2ηφφ − 4Z2ξtφ = 0, (39)
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3(2Uφ − h(t)gφ)ξφ + 6Z(Hξt + ξHt) + 4Zηtφ − 2Zξtt + 2Zφηt = 0, (40)

[h(Zφgφ − Zgφφ) + 2(ZUφφ − ZφUφ)]η + Z(hgφ − 2Uφ)ηφ

+ 2Z(2Uφ − hgφ)ξt − h′Zgφξ + 2Z2(3Hηt + ηtt) = 0. (41)

Thus, by imposing a symmetry [ξ, η] in the above system of PDE, we shall be
able to determine the form of the unknown functions, Z,H, h and g in order to
obtain an integrable model.

4.1. Symmetry [nt, φ]

By considering the symmetry [ξ = nt, η = φ], then, from Eq. (39), we obtain

(ZZφφ − Z2
φ)φ+ ZZφ = 0, ⇒ Z = Z0φ

m, m ∈ R. (42)

Now, from Eq. (40), we get

H + tH ′ = 0, ⇒ H = a1t
−1, a1 ∈ R

+, (43)

this implies that the scale factor behaves as: a = ta1 , and therefore R = R0t
−2.

From Eq. (41), splitting in g and U, and simplifying we get

[(Uφφ −mφ−1Uφ)]φ− Uφ + 2nUφ = 0, (44)

h(mφ−1gφ − gφφ)φ+ hgφ − 2hgφn− h′gφnt = 0, (45)

so, we find

Uφφ = AUφφ
−1, ⇒ U = C1 + C2φ

A+1, (46)

with A = 1 +m− 2n, and C1, C2 ∈ R, while

gφφ = Bφ−1gφ ⇒ g = C3 + C4φ
B+1, (47)

where B = 1 + m − 2n − h′nt/h, and C3, C4 ∈ R, that is, they are constant of
integration.

Therefore, we have obtained the following solution

f(φ,R) = h(R)g(φ) = h(R)(C3 + C4φ
B+1),

U = C1 + C2φ
A+1, A = 1 +m− 2n,

Z = Z0φ
m, m ∈ R,

H = a1t
−1, a1 ∈ R, a = ta1 ,

(48)

with B = 1 +m− 2n− h′nt/h, thus (without lost of generality)

f(φ,R) = h(R)C4φ
B+1, U = U0φ

A+1,

Z = Z0φ
m, H = a1t

−1.
(49)
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With regard to the function h(R), we set h′nt/h = const, since all the quantities
in B are numerical constants, therefore

h′

h
nt = c ⇒ h = C5t

c
n , (50)

where c ∈ R, such that c �= −2n, and nc ∈ R
−, this result implies that

h(R) = C6R
r = Rr

0t
−2r = Rr

0t
c/n, r = −c/2n. (51)

In this way

f(φ,R) = h(R)g(φ) = f0φ
B+1Rr,

U = U0φ
A+1,

Z = Z0φ
m, m ∈ R,

H = a1t
−1, a = ta1 ,

R = 6a1(2a1 − 1)t−2,

(52)

with B = 1 + m − 2n − c, A = 1 + m − 2n, B = A − c, −2rn = c, a1 ∈ R, so
Rr = Rr

0t
−2r = Rr

0t
c/n.

Action (1) collapses to

S =
∫
d4x

√−g
[
1
2
φ2+m+2n(r−1)Rr − 1

2
φmφ;µφ;µ − φ2+m−2n + Lm

]
. (53)

4.1.1. Wave equation

We now try to find a solution for the scalar field φ by studying the wave equa-
tion (37) introducing the obtained results (52) into it, then we obtain

φ̈ = −m
2
φ−1φ̇2 − 3a1t

−1φ̇+ (2 +m− 2n− c)
Rr

0

2Z0
t

c
nφ1−2n−c

− (2 +m− 2n)
U0

Z0
φ1−2n, (54)

finding a particular solution, φ = φ0t
1/n, φ0 ∈ R, which is compatible with power-

law for the scale factor: a = ta1 . This particular solution is also the invariant
solution induced by the symmetry [ξ = nt, η = φ], that is,

dt

ξ
=
dφ

η
⇒ φ = φ0t

1/n, (55)

thus

h(R) = h(t) = C9t
c
n ,

g(φ) = C1φ
B+1 = g0t

1
n (2+m−2n−c),
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f(φ,R) = h(R)g(φ) = f0t
1
n (2+m−2n),

Z = Z0t
m/n,

U = U0t
1
n (2+m−2n),

H = a1t
−1, a = ta1 , (56)

with c ∈ R, c �= −2n, nc ∈ R
−, and B = 1+m− 2n− c. Furthermore, this solution

verifies Eq. (33), so we may say that the soltion is SS.
As it is observed, from the first of the FE Eq. (7)

3FH2 = ρ+
Z

2
φ̇2 − 3HḞ +

1
2
(RF − f) + U, (57)

the invariant solution is consistent from the dimensional point of view, since all the
quantities involved have the same dimensional equation (have the same order of
magnitude t

1
n (2+m−2n)), that is, [f ] = [Zφ̇2] = [U ] = [ρ], where ρ = ρ0a

−3(γ+1) =
ρ0t

−3a1(γ+1), and therefore −3a1(γ + 1) = (2 +m− 2n)/n, so

a1 =
2(n− 1) −m

3n(γ + 1)
, (58)

that is, a1 = a1(n,m, γ), where we assume that a1 > 0. The deceleration parameter,
q = d(H−1)/dt− 1, is therefore

q =
3n(γ + 1)

2(n− 1) −m
− 1. (59)

Now, we may find restrictions on the parameters (n,m, γ) under the assumptions
a1 > 0, q < 0 and a U decreasing (U↘, it mimics a variable cosmological constant).
For example, if we set, m = −2, we find that a1 = 2/3(γ + 1), and therefore
q = (3γ + 1)/2 and U = U0t

−2, finding in this way that q < 0, iff γ < −1/3.
In the same way, if we set m = 0, induced gravity like model (IG), then the

action yields

S =
∫
d4x

√−g
[
1
2
φ2+2n(r−1)Rr − 1

2
φ;µφ;µ − φ2(1−n) + Lm

]
, (60)

while the quantities behave as

φ ≈ t1/n, h(t) ≈ t−2r, g(φ) ≈ t
2(1+n(r−1))

n ,

f(φ,R) ≈ t
2
n (1−n), Z ≈ t0, U ≈ t

2
n

(1−n)
,

(61)

then we get a1 > 0, q < 0, and U ↘, that is, a1 = 2(n − 1)/3n(γ + 1), q =
(3n(γ + 1)/2(n− 1)) − 1 and U0t

2(1−n)/n, thus we find that −1 < γ and n < 0.

1750104-11

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
04

/0
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 3, 2017 9:19 WSPC/S0219-8878 IJGMMP-J043 1750104

J. A. Belinchón & P. Dávila

4.2. Symmetry [n, φ]

If we consider the symmetry [ξ = n, η = φ], then the system (38)–(41) yields(
Zφφ − Z2

φ

Z

)
η + Zφ = 0, (62)

6ZξH ′ = 0, (63)

ηUφφ −
(
ηφ − 2ξt +

Zφ

Z
η

)
Uφ = 0, (64)

ηgφφ −
(
Zφ

Z
η + ηφ − 2ξt − h′

h
ξ

)
gφ = 0, (65)

so, from Eqs. (62)–(63), we get

Z = Z0φ
m, m ∈ R, H = const = a1, a = exp(a1t), q = −1, (66)

then, since H = const = a1, this means that the scalar curvature R is also constant
(R = 12H2), thus

R = const. ⇒ h(R) = const. ⇒ h′ = 0, (67)

and therefore, Eqs. (64)–(65) yield

φUφφ − (1 +m)Uφ = 0, U = C1 + C2φ
m+2, (68)

φgφφ − (1 +m)gφ = 0, g = C3 + C4φ
m+2, (69)

with Ci ∈ R.
Therefore, we have obtained the following set of solutions

Z = Z0φ
m, m ∈ R,

H = const = a1, a = exp(a1t), q = −1,

R = const.

g = g0φ
m+2,

h(R) = const., h = Rr, r ∈ R,

f = hg = Rrφm+2,

U = U0φ
m+2,

ρ = ρ0a
−3(γ+1) = ρ0e

−3a1(γ+1)t,

(70)

which are consistent, at least, from the dimensional point of view. In this way,
action (1) collapses to

S =
∫
d4x

√−g
[
1
2
Rrφm+2 − 1

2
Z0φ

mφ;µφ;µ − U0φ
m+2 + Lm

]
. (71)
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4.2.1. Wave equation

We now try to solve the wave equation (37) for the scalar field, by introducing the
above results, it yields

φ̈ = −Aφ−1φ̇2 − Bφ̇+ Cφ, (72)

where A = m/2, B = 3a1, and C = (g0(12a2
1)r − 2U0)(m + 2)/2Z0, finding in this

way the following general solution:

φ = exp
(
− B

A+ 1
t

)
(C1 exp(M+) − C2 exp(M−))

1
(A+1) , (73)

with C1, C2 ∈ R, and

M± =
1
2
(B ±

√
B2 + 4C(A+ 1))t, (74)

note that for this general solution m �= −2, which is new in the literature to the
best of our knowledge. We have performed a numerical analysis of this solution,
and taking into account that the potential must be decreasing on time, then we
may conclude that C1 = 0. In this way, if C1 = 0, then Eq. (73) yields

φ = φ0e
−Kt, K =

√
B2 + 4C(A+ 1)

A+ 1
. (75)

We also may find the particular (invariant) solution

φ = φ0 exp(t/n), (76)

where n takes the following values from Eq. (72)

an2 + bn+ c = 0, (77)

being a = (g0(12a2
1)

r − 2U0)(m+ 2)/Z0, b = −6a1, and c = −(m+ 2), therefore

n = −c
b
, if b �= 0 ∧ a = 0, (78)

thus

n = − (m+ 2)
6a1

if
(
g0(12a2

1)
r

Z0
− 2

U0

Z0

)
(m+ 2) = 0, (79)

that is m = −2, or g0(12a2
1)

r = 2U0, but if m = −2, then n = 0 (since c = 0, so we
have to ruled out this particular case, m = −2), and the other solution

n =
3a1 ±

√
9a2

1 +
(

g0(12a2
1)r

Z0
− 2U0

Z0

)
(m+ 2)2(

g0(12a2
1)r

Z0
− 2U0

Z0

)
(m+ 2)

, (80)

with (g0(12a2
1)

r − 2U0)(m + 2)/Z0 �= 0, and 9a2
1 > (g0(12a2

1)
r − 2U0)(m + 2)2/Z0.

Therefore, this solution is valid for any value of m except the case m = −2.
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From the conservation equation ρ = ρ0a
−3(γ+1) and the first of the FE Eq. (7),

the invariant solution is consistent from the dimensional point of view, and there-
fore, −3a1(γ + 1) = (2 +m)/n, so

a1 = − m+ 2
3n(γ + 1)

, (81)

noting that a1 > 0 if n < 0. With regard to the potential, U = U0φ
m+2, it is

decreasing only if (m + 2)/n < 0, so n < 0 is a consistent value. In this case, we
cannot obtain any restriction on the free parameters from the deceleration param-
eter q, since q = −1 (accelerating solution) for any value of n, m and γ. Usually
m takes the values m = −1 (Jordan–Brans–Dicke like solution), m = 0 (induced
gravity like model) and m = −2 (scalar like model).

4.3. Symmetry [at, b]

If we consider the symmetry [at, b], then the system (38)–(41) collapses to

ZZφφ − Z2
φ = 0, (82)

H + tHt = 0, (83)

h(Zφgφ − Zgφφ)b − h′Zgφat− 2Zahgφ = 0, (84)

2b(ZUφφ − ZφUφ) + 4ZUφa = 0, (85)

thus

Zφφ =
Z2

φ

Z
⇒ Z = Z0e

C1φ,

Ht

H
= −1

t
⇒ H =

a1

t
⇒ a = ta1 , R = R0t

−2, (86)

Uφφ =
(
C1 − 2a

b

)
Uφ ⇒ U = C2 + U0e

(C1−2n)φ, n =
a

b
,

taking into account these results, then

gφφ =
(
C1 − n

(
2 + t

h′

h

))
gφ, (87)

and therefore

g = C3 +
1
C4
eC4(C5+φ), h = h0t

1
n (C1−C4−2n). (88)

If we set C2 = C5 = 0, n = a/b, then (setting C1 = m, C4 = k)

Z = Z0e
mφ, H =

a1

t
, U = U0e

(m−2n)φ, g =
1
k
ekφ, h = h0t

(m−k−2n) = Rr,

(89)

while the invariant solution induced by the symmetry [nt, 1] is

φ =
1
n

ln t, (90)
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noting that this solution is quite similar the obtained one in Eq. (32). Thus, the
action yields

S =
∫
d4x

√−g
[
1
2
RreC4φ − 1

2
Z0e

C1φφ;µφ;µ − U0e
(C1−2n)φ + Lfluid

]
. (91)

As in the above cases, from the conservation equation ρ = ρ0a
−3(γ+1) and the

first of the FE Eq. (7), we obtain that −3a1(γ + 1) = (m− 2n)/n, so

a1 =
2n−m

3n(γ + 1)
, (92)

and therefore

q =
3n(γ + 1)
2n−m

− 1, (93)

thus, by considering that a1 > 0, q < 0 and U decreasing, we may find some
restrictions on the free parameters n and m (γ ∈ (−1, 1]). In general, we found that
m < 0, 0 < n such that γ < −(n +m)/3n. If we set m = 0, then, γ ∈ (−1,−1/3)
while n is free. If m = −1, then n < −1/2 or 0 < n with γ < −(n+ 1)/3n.

5. Lagrangian Collineation Approach

The Lagrangian density takes the following form (without the matter field, that is
ρ = 0 = p):

L = a3(FR− f) + 6aȧ2F + 6a2ȧḞ − a3(Zφ̇2 − 2U), (94)

or

L = ga3(RhR − h) + 6gaȧ2hR + 6ga2ȧṘhRR + 6gφa
2ȧφ̇hR − a3(Zφ̇2 − 2U), (95)

where F = fR = ∂Rf(R, φ), and Ḟ = Ṙ∂RRf + φ̇∂Rφf.

We consider in this approach the Lagrangian (95) so Q = (a, φ,R) and therefore
TQ = (a, ȧ, φ, φ̇, R, Ṙ). As we can see, the Hessian is different of zero iff

H = 72g2h2
RRa

7Z �= 0 ⇔ hRR �= 0. (96)

FE reads

3FH2 =
Z

2
φ̇2 − 3HḞ +

1
2
(RF − f) + U, (97)

F (2Ḣ + 3H2) = −Z
2
φ̇2 − 2HḞ − F̈ +

1
2
(RF − f) + U, (98)

2Z(φ̈+ 3Hφ̇) = fφ − Zφφ̇
2 − 2Uφ. (99)

Let X be a VF, such that

X = α
∂

∂a
+ β

∂

∂φ
+ γ

∂

∂R
+ α̇

∂

∂ȧ
+ β̇

∂

∂φ̇
+ γ̇

∂

∂Ṙ
, (100)

where α, β and γ are functions of the scale factor a, the scalar field φ and R. We
say that the vector field, X, is a Lagrangian collineation if it satisfies the equation
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LXL = XL = 0, where LX stands for the Lie derivative with respect to the vector
field X. We find the associated system of PDE

6αghR + 6aβgφhR + 6aγghRR + 12aαaghR

+ 6βagφhRa
2 + 6ghRRγaa

2 = 0, (101)

6αφgφhR − 2Zβφa− βZφa− 3Zα = 0, (102)

6ghRRa
2αR = 0, (103)

Zβaa
2 − 6αgφhR − 3βgφφhRa− 3γgφhRRa− 3gφhRaαa

− 6ghRαφ − 3gφhRaβφ − 3ghRRγφa = 0, (104)

2αghRR + βgφhRRa+ γghRRRa+ ghRRaαa

+ 2ghRαR + gφhRaβR + ghRRγRa = 0, (105)

3αRgφhR − βRZa+ 3ghRRαφ = 0, (106)

−3ghRαR + 3ghα− gφhRβRa+ hgφβa

− γgaRhRR − 6αU − 2βaUφ = 0. (107)

We would like to point out that in [35], the authors have obtained a bit different
system of PDE.

We have found the following solution

α = c1a, β = ϕ(φ) γ = 0, g = me
R −3c1

ϕ(φ) dφ,

h = Rñ, Z = c2e
R −3c1+2ϕ′(φ)

ϕ(φ) dφ, U = c3e
R −3c1

ϕ(φ) dφ,

(108)

where, (ci)3i=1,m, are constants of integration and ϕ′(φ) = dϕ
dφ , being ϕ(φ) an

arbitrary function of φ. This means that for different choices of ϕ(φ), we will obtain
different solutions. For example, by assuming ϕ(φ) = − 3c1

n φ, we obtain

α = c1a, β = −3c1
n
φ, γ = 0, g = mφn,

h = Rñ, Z = Z0φ
n−2, U = U0φ

n,

(109)

and therefore the action collapses to

S =
∫
d4x

√−g
[
1
2
Rrφn − 1

2
Z0φ

n−2φ;µφ;µ − U0φ
n + Lm

]
. (110)

But, if we assume ϕ(φ) = −3c1/n, then we obtain

α = c1a, β = −3c1
n
, γ = 0, g = g0e

nφ,

h = Rñ, Z = Z0e
nφ, U = U0e

nφ,

(111)

and therefore the action collapses to

S =
∫
d4x

√−g
[
1
2
Rrenφ − 1

2
Z0e

nφφ;µφ;µ − U0e
nφ + Lm

]
, (112)

1750104-16

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
04

/0
4/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 3, 2017 9:19 WSPC/S0219-8878 IJGMMP-J043 1750104

Exact solutions for a scalar-tensor theory through symmetries

which is similar but not identical to the obtained one in Eq. (91), that is, the
solution generated by the symmetry [at, b].

Remark 2. From the results (109), we note that the invariant solution induced by
the symmetry X, that is, α = c1a, β = −3c1φ/n, and γ = 0, is the following one:

−3da
na

=
dφ

φ
=
dR

0
,

thus

φ = a−3/n, or a = a0φ
−n/3, and R = const,

arriving at the same conclusions through dimensional considerations, since from the
FE

3FH2 =
Z

2
φ̇2 − 3HḞ +

1
2
(RF − f) + U,

with

g = mφn, h = Rñ, Z = Z0φ
n−2, U = U0φ

n,

we may observe that

[U ] = [g] = [f ] ⇒ [h] = 0,

and therefore

R = const,⇒ H = const ⇒ a = exp(a1t).

By taking into account the results (109), the Lagrangian (95) yields

L = mñRñ−1φna

(
(ñ− 1)
ñ

Ra2 + 6ȧ2 + 6(ñ− 1)aȧṘR−1 + 6nφ−1aȧφ̇

)

− a3φn(Z0φ
−2φ̇2 − 2U0), (113)

thus, the conserved quantity, Σ = iXθL, where θL = ∂ȧLda + ∂φ̇Ldφ + ∂ṘLdR,
yields

Σ = iXθL = α∂ȧL + β∂φ̇L, (114)

since α = c1a, β = −3c1φ/n, and γ = 0, then Σ collapses to

Σ = 6mñφna2Rñ−1(−ȧ+ (ñ− 1)aṘR−1 + nφ−1aφ̇) +
6
n
Z0a

3φn−1φ̇, (115)

now, by assuming, Σ = 0:

mñRñ−1(−ȧ+ (ñ− 1)aṘR−1 + nφ−1aφ̇) = − 1
n
Z0aφ

−1φ̇, (116)

note that R = 6(Ḣ2 + 2H2) = const, and if we take into account our previous
result, Ṙ = 0, then

−nmñRñ−1 ȧ

a
= −n2mñRñ−1φ−1φ̇− Z0φ

−1φ̇, (117)
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in this way

A
ȧ

a
=
(
An+

Z0

n

)
φ̇

φ
, A = mñRñ−1

0 , (118)

and therefore

a = a0φ
l, l = n+

Z0

An
, (119)

which is the result obtained previously by considering the invariant solution.

5.1. Friedman equation

We now study the first of the FE in order to determine the scalar function, φ,
therefore by considering

3FH2 =
Z

2
φ̇2 − 3HḞ +

1
2
(RF − f) + U, (120)

with g = mφn, h = Rñ (such that Ṙ = 0), Z = Z0φ
n−2, U = U0φ

n, with hRR �= 0,
then (algebra brings us to obtain)

3ñmH2 =
Z0

2Rñ−1

φ̇2

φ2
− 3ñmnH

φ̇

φ
+
m

2
R(ñ− 1) +

U0

Rñ−1
. (121)

By taking into account the relationship a = a0φ
−n/3, then H = −nφ̇/3φ, and

therefore

ñmn2

3
φ̇2

φ2
=

Z0

2Rñ−1

φ̇2

φ2
− 3ñmnH

φ̇

φ
+
m

2
R(ñ− 1) +

U0

Rñ−1
, (122)

and we also consider that R = const. so

Aφ̇2 +Bφ2 = 0, (123)

with

A =
(

2
3
ñmn2 +

Z0

2Rñ−1

)
, B =

m

2
R(ñ− 1) +

U0

Rñ−1
= const. (124)

Equation (123) admits the following solution

φ = φ0e
±
√

−B
A t, (125)

which is in agreement with the second solution obtained through the Lie group
method.

6. Conclusions

We have studied the f(R, φ) cosmological models with a flat FRW metric through
three different symmetry methods and by making an assumption on the form of
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the function f(R, φ) = h(R)g(φ). In this way, we have shown how to generate exact
analytical solutions and how they could explain the observed acceleration of our
universe.

With the first of the approaches, matter collineation, we have shown that this
kind of models admits SS solutions by determining the form of each of the unknown
functions, finding two different solutions. The method allows us to determine the
exact expressions for the functions Z and U in function of t as well as in function
of φ. Although we have worked with a FRW metric, the obtained results with this
technique can be generalized to anisotropic metric (the SS Bianchi models) as well
as for the Kantowski–Sach metric, since, in these cases, the scale factors follow a
power law solution.

With the method of the Lie groups, the most general of all of them, we have
obtained three exact solutions, as examples, but more solutions could be obtained
following the receipt, that is, by imposing other symmetries. The first of the solu-
tions is identical to the first solution obtained through the matter collineation
approach and therefore it is also SS. We have determined that the function f must
be of the form f(R, φ) = Rrφn, in such a way that the obtained model generalizes
the well-known model of the Brans–Dicke, induced gravity, etc, for different values
of n, but with Rr. In the same way, we have shown how to constrain the parame-
ters, (n,m, γ) in order to obtain accelerating solutions and a decreasing potential
on time (it mimics a variable cosmological constant). In the second example, we
have obtained a de Sitter like solution and therefore R, the Ricci scalar, is constant.
In this case, we have obtained a new cosmological solution, in the best of our knowl-
edge, by studying the wave function for the scalar field. We also have studied the
invariant, particular, solution induced by the symmetry. We have emphasized that
this solution is not valid for m = −2. The third solution corresponds to the second
SS solution. Nevertheless, in our opinion, the followed method have a drawback.
Note that we have studied only the wave equation (WE) ignoring the rest of the FE,
and therefore by imposing a symmetry, we are able to determine the form of the
function f, Z and U in order to obtain a solution, but only for this equation (the
WE), thus one needs to check that this solution is also a solution of the rest of
the FE. In the exposed examples, we have checked that the solution is a solution
of the FE not only of the WE, so not all symmetry brings us to obtain a complete
solution of the FE. In fact, the FE reduce to a relation among constants, that
is, they reduce to an algebraic system of equations. This system of equations has
three equations and two auxiliary relationships; a1 = a1(n,m, γ), and R0 = R0(a1),
with eight unknowns (φ0, ρ0, g0, Z0, U0,m, n, r), thus, we can only determine three
constants in function of the other five. These five undefined constants can be con-
strained by physical arguments (the potential U must be decreasing, the energy
density must be positive and decreasing) or by taking into account observational
data (the cosmological constant must be positive, that is, U0 > 0, or the deceleration
parameter must be negative, q < 0).
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With regard to the Lagrangian collineation approach, we have only been able to
obtain a solution to the equation LXL = 0, but this kind of equations admits more
solutions. Nevertheless, our solution depends on a function ϕ = ϕ(φ) which allows
us to generate many solutions. We have shown two cases. The first case given by
Eq. (109) coincides with the second solution generated with the Lie group method.
The second case (111) is similar but not identical to the obtained one in Eq. (91),
that is, the solution generated by the symmetry [at, b].
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