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We study the classical flat full causal bulk viscous FRW cosmological model with variable gravita-
tional and cosmological constants through the factorization method. The method allows us to find
some new exact parametric solutions. The assumptions made bring us to study two approaches.
We find, in the studied cases, that the Universe ends in an accelerating era except in the case of a
particular solution where the Universe could be noninflationary for all times. In both approaches
the cosmological constant is a decreasing function of time, while the gravitational constant behaves
as a growing or decreasing time function depending on the sign of Λ. By taking into account recent
observations that indicate that Λ must be positive, we conclude that G increases with time except
in the first solution where both “constants” tend asymptotically in the large time limit to a constant
value. We also present a new factorization scheme which allows us to generate new solutions to a
kind of variable coefficient nonlinear second order ODE.

Keywords: Full causal bulk viscosity, FRW cosmologies, time-varying constants, Factorization method, exact
solutions.

I. INTRODUCTION

The distribution of matter can be satisfactorily described by a perfect fluid due to the large scale distribution
of galaxies in our universe. However, observed physical phenomena such as the large entropy per baryon and the
remarkable degree of isotropy of the cosmic microwave background radiation, suggest analysis of dissipative effects in
cosmology. Furthermore, there are several processes which are expected to give rise to viscous effects. These are the
decoupling of neutrinos during the radiation era and the decoupling of radiation and matter during the recombination
era. Bulk viscosity is associated with the GUT phase transition and string creation. Misner [1–3] and Weinberg [4, 5]
have studied the effect of viscosity on the evolution of cosmological models. Due to such assumption, dissipative
processes are supposed to play a fundamental role in the evolution of the early Universe. The theory of relativistic
dissipative fluids, created by Eckart [7] and Landau and Lifshitz [8] has many drawbacks, and it is known that it is
incorrect in several aspects mainly those concerning causality and stability. Israel [9] formulates a new theory in order
to solve these drawbacks. This theory was later developed by Israel and Stewart [10] into what is called transient
or extended irreversible thermodynamics. The best currently available theory for analyzing dissipative processes in
the Universe is the full causal thermodynamics developed by Israel and Stewart [10], Hiscock and Lindblom [11] and
Hiscock and Salmonson [12]. The full causal bulk viscous thermodynamics has been extensively used to study the
evolution of the early Universe and some astrophysical processes [13, 14]. However, due to the complicated nature of
the evolution equations, very few exact cosmological solutions of the gravitational field equations are known in the
framework of the full causal theory [15]. Recently, several authors have studied the possibility that a single imperfect
fluid with bulk viscosity can replace the need for separate dark matter and dark energy in cosmological models. Since
bulk viscosity implies negative pressure, this rises the possibility of unifying the dark sector. With suitable choices
of model parameters, it has been shown that the background cosmology in these models can mimic that of a ΛCDM
Universe to high precision, since the presence of dissipative effects could alleviate some of the problems presented
in the ΛCDM model. In the same way, these kinds of models, in the homogeneous and isotropic background have
similarities with a generalized Chaplygin gas model (see for instance [16–22]).
Since the pioneering proposal of Dirac [23] on a model with a time variable gravitational coupling constant G,

motivated by the occurrence of large numbers in the universe or numerological coincidences uncovered by Weyl,
Eddington and Dirac himself (see for instance [24] for a review and references therein), cosmological models with
variable G have been intensively investigated in the literature, as for example Jordan-Brans-Dicke model and its
generalizations [25] or more recently the models proposed by Lu et al [26] or Smolin [27]. In the same way, there are
in the literature many works devoted to studying the possible variations of G through astrophysical and cosmological
observations (see for instance [28] for a review and references therein). On the other hand, recent developments
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in particle physics and cosmology have shown that the cosmological constant Λ ought to be treated as a dynamical
quantity [29] rather than a simple constant, in order to alleviate the so called fine-tuning and coincidence problems [30].
The dynamics of the scale factor in FRW type models with a variable Λ term has recently been revisited by Overduin
and Cooperstock [31] for the perfect fluid case. Alternative models of dark energy suggest a dynamical form of dark
energy originating from a variable cosmological constant Λ(t) (see Sola et al [32]). Since the cosmological models
based on General Relativity do not allow any possible variation in the gravitational constant G and cosmological
constant Λ, because of the fact that the Einstein and stress-energy tensors have zero divergence, then it is necessary
to introduce some modifications to the Einstein equations, in order to avoid violations of the energy conservation law.
The effects of dissipation, as expressed in the form of a non-vanishing bulk viscosity coefficient in the stress-energy

tensor of matter in cosmological models with variable Λ and G, have been considered by several authors (we cite only
a few of them [33–40]). In [39] the authors present an unified description of the early evolution of the universe with
a number of possible assumptions on the bulk viscous term and the gravitational constant, in which an inflationary
phase is followed by radiation-dominated phase. They also show that the effect of viscosity affects the past and future
of the universe. Arbab [40] has shown that the cosmological and gravitational constants increase exponentially with
time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during
inflation is found to be huge suggesting that all matter in the universe is created during inflation. But only a few
works can be found within the framework of the full causal theory (see for instance [41, 42]).
Therefore, the purpose of the present work is to study the full causal bulk viscous cosmological model with flat

FRW symmetries, allowing that G and Λ may vary with the time. In order to find some new exact solutions, we
employ the factorization method since it has been very useful for this purpose in a previous work in this context [15].
The factorization of linear second order differential equations is a well-established method in finding exact solutions

through algebraic procedures. It was first introduced by Dirac to solve the spectral problem for the quantum oscillator,
and some years later, had a further development due to Schrodinger’s works on the factorization of the Sturm-Liouville
equation. At the present time, very good informative reviews on the factorization method can be found in the open
literature (see for instance [43, 44]). Recently, the factorization method has been applied to find exact solutions of
nonlinear ordinary differential equations (ODE) [45–52]. In [46] and [47], a systematic way to apply the factorization
method to nonlinear second order ODE has been provided. The factorization of some ODE may be restricted due to
constraints which appear in a natural way within the factorization procedure. In this work, we have been able to get
exact parametric solutions of some ODE which do not allow their factorization or present cumbersome constraints,
by simply performing transformation of coordinates. Also, a new factorization scheme has been developed to solve a
kind of variable coefficient nonlinear ODE for the energy density, which raises in the proposed model.
The paper is organized as follows. In Section II, we start by reviewing the main components of a flat bulk viscous

FRW cosmological model with variable G and Λ, and introduce the assumptions. These assumptions bring us to study
two different approaches. In Section III we study different cases of the first approach while Section IV is devoted to
the study of the second one. Finally, we summarize our conclusions in Section V.

II. THE MODEL.

The Einstein gravitational field equations (FE) with variable G and Λ are:

Rij −
1

2
gijR = 8πG(t)Tij + Λ(t)gij , (1)

in the following we consider a system of units so that c = 1. The bulk viscous effects can be generally described
by means of an effective pressure Π, formally included in the effective thermodynamic pressure peff [14]. Then, in
the comoving frame the energy momentum tensor has the components T 0

0 = ρ, T 1
1 = T 2

2 = T 3
3 = −peff . In the

presence of the bulk viscous stress Π, the effective thermodynamic pressure term becomes peff = p + Π, where p is
the thermodynamic pressure of the cosmological fluid. The causal evolution equation for the bulk viscous pressure is
given by [14]

τ Π̇ + Π = −3ξH − 1

2
τΠ

(
3H +

τ̇

τ
− ξ̇

ξ
− Ṫ

T

)
, (2)

where T is the temperature, ξ the bulk viscosity coefficient and τ the relaxation time. We have first to give the
equation of state for p and specify T , τ and ξ. We shall assume the following laws [14]:

p = (γ − 1) ρ, ξ = αρs, T = T0ρ
γ−1
γ , τ =

ξ

ρ
= αρs−1, (3)
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where 1 ≤ γ ≤ 2, α ≥ 0, T0 ≥ 0 and s ≥ 0 are constants. Equations (3) are standard in the study of bulk viscous
cosmological models, whereas the equation τ = ξ/ρ is a simple procedure to ensure that the speed of viscous pulses
does not exceed the speed of light.
In order to take into account the variations of G and Λ we use the Bianchi identities (see for instance [53–55])(

Rij −
1

2
Rgij

);j

= 0 = (8πGTij − Λgij)
;j
, (4)

which read:

8πG [ρ̇+ (ρ+ peff ) θ] = −Λ̇− 8πĠρ, (5)

(a dot means time derivative) and θ = ui
;i is the expansion factor, where ui is the 4-velocity. Assuming that the total

matter content of the Universe is conserved, T j
i ;j = 0, then the energy conservation equation can be split into two

independent equations:

ρ̇+ (ρ+ peff ) θ = 0, and Λ̇ = −8πĠρ. (6)

As it is observed, from the equation: Λ̇ = −8πĠρ, the behaviour of Λ and G are related in such a way that when G is
growing then Λ is positive, but if G is decreasing then Λ is negative. If G behaves as a true constant, then Λ vanishes.
We consider that the geometry of the Universe can be described by a spatially flat FRW type metric given by

ds2 = dt2 − f2 (t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (7)

Therefore, for the line element (7), the gravitational field equations describing the cosmological evolution of a causal
bulk viscous fluid in presence of the variable gravitational and cosmological constants are

3H2 = 8πG(t)ρ+ Λ(t), (8)

2Ḣ + 3H2 = −8πG(t) (p+Π) + Λ(t), (9)

ρ̇+ 3 (ρ+ p+Π)H = 0, (10)

Λ̇(t) = −8πρĠ(t), (11)

τ Π̇ + Π = −3ξH − ϵ

2
τΠ

(
3H +

τ̇

τ
− ξ̇

ξ
− Ṫ

T

)
. (12)

An important observational quantity is the deceleration parameter q = d
dt

(
1
H

)
−1, where H = ḟ/f . The sign of the

deceleration parameter indicates whether the model inflates or not. The positive sign of q corresponds to “standard”
decelerating models whereas the negative sign indicates inflation.
The growth of the total comoving entropy Σ(t) over a proper time interval (t0, t) is

Σ(t)− Σ(t0) = − 3

kB

∫ t

t0

Πf3HT−1dt, (13)

where kB is the Boltzmann constant.

A. Assumptions

Approach 1. With the previous choices, the general solution of the gravitational field equations with variable
gravitational and cosmological constants still depends on the functional form of G and Λ [41]. In the first approach,
we shall fix the mathematical form of the cosmological constant assuming that it is a function of the Hubble parameter
only, and its time dependence is [34]:

Λ = 3βH2, (14)

the gravitational constant G and the energy density ρ are given by:

G = bH−nβ , ρ = ρ0H
n, (15)
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where ρ0 = 3/4πbn ≥ 0 and b ≥ 0 are constants, and n = 2/ (1− β) ≥ 0, in order to assure a time decreasing energy
density of the Universe. One must also assume that H is a decreasing function of the cosmological time.
With the use of the barotropic equation of state p = (γ − 1) ρ and Eq. (9), we obtain

Ḣ +
3γ

n
H2 + 4πGΠ = 0. (16)

In view of Eq. (15), Eq. (16) becomes

Ḣ +
3γ

n
H2 + 4πbH−nβΠ = 0. (17)

With the use of Eqs. (3) and (17), the causal evolution equation for the bulk viscosity (12) leads to the following
equation for the Hubble function H:

Ḧ +
[
3H + α0H

n(1−s)
]
Ḣ +

(
n− 4γ

2γ

)
H−1Ḣ2 +

9

n

(γ
2
− 1
)
H3 +

3γα0

n
H2+n(1−s) = 0, (18)

where α0 = ρ1−s
0 /α.

Approach 2 [42]. From the field equations we obtain for the derivative of the Hubble function the alternative
expression

Ḣ = −4πG(t) (ρ+ p+Π) . (19)

As it has been pointed out by R. Maartens in [14], all the relationships between the physical quantities are phe-
nomenological or imposed ad hoc so that the principles of thermodynamics are not infringed. If we rewrite Eq. (2)
by taking into account Eq. (3), then we obtain an equation that expresses the bulk viscous pressure as a function of
the energy density only. Now, as it has been pointed out in Ref. [42], the dimensional analysis shows us that

[Π] = [p] = [ρ] , (20)

that is, these physical quantities have the same dimensional equation, so the natural way (from the dimensional point
of view) is to set an equation of state of the form

Π = −χρ, (21)

where χ ≥ 0.
With the last assumption, the bulk viscosity evolution equation can be rewritten in the alternative form

1

2γ

ρ̇

ρ
+

1

α
ρ1−s = 3

(
1

χ
− 1

2

)
H. (22)

Taking the derivative with respect to the time of this equation and with the use of Eq. (19), we obtain the following
second order differential equation describing the time variation of the density of the cosmological fluid:

ρ̈− 1

ρ
ρ̇2 +Dρ1−sρ̇−AG(t)ρ2 = 0, (23)

where D = 2 (1− s) γ/α > 0 and A = 12π (γ − χ) (χ− 2) γ/χ < 0.

III. FACTORIZATION METHOD FOR APPROACH 1

A. Case 1

The Eq. (18) can be simplified by performing the following transformation of the dependent and independent
variables,

H = ya, dη = Kyadt, (24)

where a and K are constants. Then, it turns into the ODE

y′′ +

(
−1 +

an

2γ

)
1

y
y′ 2 +

(3 + α0y
m)

K
y′ +

9

anK2

(γ
2
− 1
)
y +

3γα0

anK2
ym+1 = 0, (25)
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where y′ = dy
dη , and m = a (n(1− s)− 1). This ODE can also be rewritten as follows

y′′ +A1
1

y
y′ 2 +

(3 + α0y
m)

K
y′ + (C1 +D1y

m) y = 0, (26)

where

A1 = −1 +
an

2γ
, C1 =

9

anK2

(γ
2
− 1
)
, D1 =

3γα0

anK2
. (27)

Let us consider the following factorization scheme [46–48] applied to Eq. (25). The nonlinear second order equation

y′′ + f (y) y′ 2 + g(y)y′ + h(y) = 0, (28)

where y′ = dy
dη = Dηy, can be factorized in the form

[Dη − ϕ1(y)y
′ − ϕ2(y)] [Dη − ϕ3(y)] y = 0, (29)

under the conditions

f (y) = −ϕ1, (30)

g(y) = ϕ1ϕ3y − ϕ2 − ϕ3 −
dϕ3

dy
y, (31)

h(y) = ϕ2ϕ3y, (32)

which are obtained by developing the differential operators on the dependent variable y in Eq. (29), and by comparing
to Eq. (28).
If we assume [Dη − ϕ3(y)] y = Ω(y), then the factorized Eq. (29) can be rewritten as

y′ − ϕ3y = Ω, (33)

Ω′ − (ϕ1y
′ + ϕ2)Ω = 0. (34)

We can introduce the functions ϕi by comparing Eqs. (26) (or (25)) and (28). Then, the functions

ϕ1 = −A1

y
, ϕ2 = a−1

1 , and ϕ3 = a1(C1 +D1y
m), (35)

where a1( ̸= 0) is an arbitrary constant, are proposed.
The explicit value of a1 is obtained from Eq. (31). Since

g(y) = ϕ1ϕ3y − ϕ2 − ϕ3 −
dϕ3

dy
y =

(3 + α0y
m)

K
, (36)

then, we get

−A1a1(C1 +D1y
m)− a−1

1 − a1(C1 +D1y
m)− a1mD1y

m =
(3 + α0y

m)

K
, (37)

and by comparing both sides of Eq. (37), the following equations are obtained

−A1a1C1 − a−1
1 − a1C1 =

3

K
, (38)

−A1a1D1 − a1D1 − a1mD1 =
α0

K
, (39)

which imply

9

2γ

(γ
2
− 1
)
a21 + 3Ka1 +K2 = 0, (40)

and

3γa1
anK

(
an

2γ
+m

)
+ 1 = 0. (41)
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Therefore, from Eq. (40) we get

a1± =
2K(−γ ±

√
2γ)

3γ − 6
, γ ̸= 2, (42)

which is singular for γ = 2. Also, from Eq. (41) we get

m = − an

6γa1±
(3a1± + 2K) , (43)

or

m± = ±an
√
2

2γ
3
2

, (44)

and taking into account that m = a (n(1− s)− 1) , then

n± =
2γ

3
2

2γ
3
2 (1− s)∓

√
2
. (45)

It is noted that n− is always positive, while n+ could be singular for some values of γ and s.
For the chosen functions ϕi, the Eq. (34) provides

Ω = κ1e
η/a1y−A1 , (46)

and therefore, from Eq. (33) we obtain the nonlinear first order differential equation

y′ − a1(C1 +D1y
m)y = κ1e

η/a1y−A1 , (47)

where κ1 is an integration constant. The authors have not been able to find the general solution of Eq. (47). However,
particular solutions of Eq. (47) can be found by setting κ1 = 0. Then, we get

y(η) =
1

(κ2e−a1±C1mη − κ3)
1/m

, (48)

where κ2 is an integration constant, and

κ3 =
D1

C1
=

2γ

3γ − 6
< 0, (49)

with C1 and D1 given in Eq. (27), and α0 = 1. We choose the constant K in such a way that −a1±C1 = 1, which
provides

K± =
3
(
γ ∓

√
2γ
)

an
=

3
(
γ ∓

√
2γ
) (

2γ
3
2 (1− s)∓

√
2
)

a2γ
3
2

. (50)

The time variable is given in parametric form by the integral

t(η) =

∫
K−1y−adη. (51)

Therefore, the main dynamical variables are given in parametric form as follows:

H = ya,

q = Kya
d

dη

(
1

H

)
− 1,

Λ = 3βH2, β = 1− 2/n,

G = bH−nβ , b > 0 (52)

ρ = ρ0H
n,

Π =
−
(
KyaH ′ + 3

2H
2
)

4πG
,

T = T0ρ
γ−1
γ = y

an(γ−1)
γ ,

f = exp (η) ,

Σ = −3

∫
Πf3HT−1 (Kya)

−1
dη.
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In order to analyze this solution, we have plotted the Eq. (52) for a1−,m−, n−,K− and for different values of s
and γ. We have set the following numerical values for the constant parameters: b = 0.4, ρ0 = 3/(4πbn), a = 1,
k2 = 0.01, γ = 1.2 and s = 0.5 (solid line), γ = 4/3 and s = 0.8 (dotted line), γ = 1.6 and s = 0.85 (dashed line),
and γ = 1.5 and s = 0.9 (long dashed line). Eq. (52) is a particular solution of the most general equation (without
any assumption) represented by Eq. (25). The solution obtained is valid for s ∈ [0, 1] and γ ∈ [1, 2) (since C1 ̸= 0).
The energy density, ρ(t), of the cosmological fluid, represented in Fig. (1), is a decreasing function of time but it
tends asymptotically to a constant value. The bulk viscous pressure Π(t), shown in Fig. (1), satisfies the condition
Π < 0, only for a time interval greater than an initial value of t∗, hence this model can describe the dynamics of
the causal bulk viscous Universe with variable gravitational and cosmological constants only for a finite time interval
when t > t∗. Furthermore, the solution is not thermodynamically consistent since the relationship |Π|/p >> 1 in all
the studied cases. In the era where the viscous effects dominated, a large amount of comoving entropy is produced.
Fig. (1) shows the time variation of the entropy. As we can observe, the entropy grows quickly in all the studied
cases and in particular when γ = 1.6 and s = 0.85 (dashed curve). With regard to the deceleration parameter q(t),
the numerical analysis performed in Fig. (2) shows us that all the studied cases start in a non-decelerating phase,
with the deceleration parameter q > 0, but it enters into an inflationary phase, with q = 1, as the time flows, so
the Universe ends in an accelerating epoch. The time variation of the cosmological and gravitational constants is
represented in Fig. (2). The cosmological constant is a decreasing function of time but it is positive in the cases:
γ = 1.6 and s = 0.85 (dashed curve), and γ = 1.5 and s = 0.9 (long dashed curve), while it is negative in the cases:
γ = 1.2 and s = 0.5 (solid curve), and γ = 4/3 and s = 0.8 (dotted curve). Note that basically Λ depends on β, and
this constant is positive if n > 2 and negative if n < 2. In the same way, the gravitational constant G(t), tends in
the large time to a constant value, G0, being growing in the cases: γ = 1.6 and s = 0.85 (dashed curve), γ = 1.5 and
s = 0.9 (long dashed curve), while it is decreasing in the cases: γ = 1.2 and s = 0.5 (solid curve), γ = 4/3 and s = 0.8
(dotted curve). Note that G = H(n−2), so it behaves as a decreasing time function when n < 2 and growing when
n > 2, n is given by Eq. (45). Therefore, G and Λ, start varying but they tend to a constant value. The possibility
that the cosmological constant and the gravitational coupling are not real constants is an intriguing possibility, which
has been intensively investigated in the physical literature. It is a very plausible hypothesis that these effects were
much stronger in the early Universe, when dissipative effects also played an important role in the dynamics of the
cosmological fluid. Hence, the solutions obtained in the present paper could give an appropriate description of the
early period of our Universe.

FIG. 1: Plots of the solution (52). Energy density ρ (t), bulk viscous pressure Π(t), and the entropy Σ(t), for γ = 1.2 and
s = 0.5 (solid line), γ = 4/3 and s = 0.8 (dotted line), γ = 1.6 and s = 0.85 (dashed line), γ = 1.5 and s = 0.9 (long dashed
line).

FIG. 2: Plots of the solution (52). q(t), G(t) and Λ(t). Parameter values as in Fig. 1.
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B. Case 2

We consider now the special case γ = 2, so Eq. (26) simplifies to the following ODE

y′′ +A1
1

y
y′ 2 +

(3 + α0y
m)

K
y′ +D1y

m+1 = 0, (53)

where m = a (n(1− s)− 1), and

A1 = −1 +
an

4
, D1 =

6α0

anK2
. (54)

Let us assume the factorization scheme provided in Eqs. (28)-(34). The Eq. (53) admits the factorization given in
Eq. (29) under the restriction equations

f (y) = −ϕ1 =
A1

y
, (55)

g(y) = ϕ1ϕ3y − ϕ2 − ϕ3 −
dϕ3

dy
y =

(3 + α0y
m)

K
, (56)

h(y) = ϕ2ϕ3y =
6α0

anK2
ym+1. (57)

Then, the following factorizing functions ϕi

ϕ1 = −A1

y
, ϕ2 = a−1

1 , and ϕ3 = a1D1y
m, (58)

where a1( ̸= 0) is an arbitrary constant, are proposed. The explicit value of a1 is obtained from Eq. (56) which
provides (

−an

2γ
−m

)
3γα0

anK2
a1y

m − a−1
1 =

(3 + α0y
m)

K
. (59)

By comparing both sides of Eq. (59), we get

a1 = −K

3
, (60)

and

a1 =
−2Kan

3 (4m+ an)
, (61)

then,

−K

3
=

−2Kan

3 (4m+ an)
=⇒ m =

an

4
, (if 2Kan ̸= 0) . (62)

Taking into account the relationship m = a (n(1− s)− 1), we find the following equation for the parameter n,

an

4
= a (n(1− s)− 1) =⇒ n =

4

3− 4s
, (63)

therefore, s < 3/4 in order to get n > 0.
The Eq. (34) of the factorization scheme, and the functions ϕi (58) generate the explicit form for Ω,

Ω′

Ω
= (ϕ1y

′ + ϕ2) = −A1

y
y′ + a−1

1 , Ω = κ1e
η/a1y−A1 , (64)

and therefore, from Eq. (33) we obtain the nonlinear first order ODE

y′ − a1D1y
my = κ1e

η/a1y−A1 , (65)

Page 8 of 21
C

an
. J

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
A

uc
hm

ut
y 

L
ib

ra
ry

 o
n 

02
/1

3/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



9

where κ1 is an integration constant.
If κ1 = 0, then Eq. (65) yields

y′ − a1D1y
m+1 = 0, (66)

whose solution is given by

y(η) = (−a1D1mη + κ2)
−1/m

, (67)

or

y(η) =
( α0

2K
η + κ2

) 1
a (4s−3)

. (68)

where κ2 is an integration constant. The parametric form of the time is given by the equation

t(η) =

∫
K−1y−adη. (69)

Therefore, we get the main dynamical variables in parametric form as follows

H =
( α0

2K
η + κ2

)4s−3

,

f = exp (η) ,

q = Kya
d

dη

(
1

H

)
− 1,

Λ =
3

2
(4s− 1)

( α0

2K
η + κ2

)8s−6

, β = 1− 2

n
∈ (0, 1) ,

G = b
( α0

2K
η + κ2

)8s−2

, b > 0, (70)

ρ = ρ0

( α0

2K
η + κ2

)−4

,

Π =
−
(
KyaH ′ + 3

2H
2
)

4πG
,

T =
( α0

2K
η + κ2

) 2
3−4s

,

Σ = −3

∫
Πf3HT−1 (Kya)

−1
dη.

Note that if we set s = 1/4, then Λ = 0 and G = const.

0 1 2 3 4 5
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300

400
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t
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FIG. 3: Plots of the solution (70). Energy density ρ (t), bulk viscous pressure Π(t), and the entropy Σ(t), for γ = 2 and different
values of s, s = 0.2 (long dashed line), s = 1/3 (dotted line), s = 1/2 (solid line), and s = 0.74 (dashed line).

In order to analyze this solution, we have plotted Eq. (70) for γ = 2 and different values of s, s = 0.2 (long dashed
line), s = 1/3 (dotted line), s = 1/2 (solid line), and s = 0.74 (dashed line). We have chosen the following values for
the constant parameters: κ2 = 0, b = 1, ρ0 = 1 and K = 1.
The solution obtained is valid for s ∈ [0, 3/4), in order to get n > 0, and γ = 2. The energy density of the

cosmological fluid, represented in Fig. (3) is a decreasing function of time. The bulk viscous pressure Π, shown in Fig.
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FIG. 4: Plots of the solution (70). q(t), G(t) and Λ(t). Parameter values as in Fig. 3.

(3), satisfies the condition Π < 0, only for time intervals greater than an initial value t∗ (cases s = 0.2, s = 1/3 and
s = 0.74). Hence, this model can describe the dynamics of the causal bulk viscous Universe with variable gravitational
and cosmological constants only for a finite time interval when t > t∗. Nevertheless, when s = 1/2, the bulk viscous
pressure satisfies always the condition Π < 0, and hence, in this case, the solution can describe the dynamics of the
causal bulk viscous Universe with variable gravitational and cosmological constants for t ∈ R+. Furthermore, the
solution is thermodynamically consistent since the relationship |Π| /p ≪ 1 in all the studied cases.
The behavior of the comoving entropy has been plotted in Fig. (3). As it is observed, when s = 1/2, this quantity

grows quicker than in the other considered cases.
The evolution of the Universe starts in a non-expansionary phase, with the deceleration parameter q > 0 for all the

values of s, represented in Fig. (4), but it enters into an inflationary phase as the time flows, so the Universe ends in
an inflationary epoch.
The time variation of the cosmological and gravitational constants is represented in Fig. (4). When s ∈ (1/4, 3/4) ,

the gravitational constant G is always a time growing function while the cosmological constant is a positive decreasing
function of time. Only in the case s = 0.2 we find that G is decreasing and Λ is negative. As we have pointed out, in
the limiting case s = 1/4, we get the solution G = G0 and Λ = 0.

C. Case 3

In this case we fix the value of constant A1 = 0, so a = 2γ
n , and K = 1. Then, we get

y′′ + (3 + α0y
m) y′ +

9

2γ

(γ
2
− 1
)
y +

3α0

2
ym+1 = 0, (71)

where m = 2γ[n(1−s)−1]
n . A particular case of this ODE has been studied in [41] for m = 0.

Let us consider now the following factorization scheme [49]. The nonlinear second order equation

y′′ + g(y)y′ + h(y) = 0, (72)

where y′ = dy
dη = Dηy, can be factorized in the form

[Dη − ϕ2(y)] [Dη − ϕ1(y)] y = 0, (73)

under the conditions

ϕ1 + ϕ2 +
dϕ1

dy
y = −g(y), (74)

ϕ1ϕ2y = h(y). (75)

If we assume [Dη − ϕ1(y)] y = Ω(y), and ϕ2 ≡ const., then the factorized Eq. (73) can be rewritten as

y′ − ϕ1y = Ω, (76)

Ω′ − ϕ2Ω = 0. (77)

Eq. (77) is easily solved giving as result Ω = k1e
ϕ2η, where k1 is an integration constant. Therefore, Eq. (76) is

rewritten in the following form

y′ − ϕ1(y)y = k1e
ϕ2η, (78)
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whose solution is also solution of the factorized Eq. (73) with ϕ2 ≡ const.
Let us consider the factorizing functions ϕ1 = a1(α1+

3α0

2 ym) and ϕ2 = a−1
1 . Then, Eq. (71) admits the factorization

[Dη − a−1
1 ][Dη − a1(α1 +

3α0

2
ym)]y = 0, (79)

which can be rewritten in the form

y′ − a1(α1 +
3α0

2
ym)y = k1e

a−1
1 η. (80)

Furthermore, the following relationship is obtained from Eq. (74),

a1α1 +
3

2
α0a1y

m + a−1
1 +

3

2
α0a1mym = −3− α0y

m. (81)

Eq. (81) is a noteworthy result which provides the explicit form of a1 and the relationship among the parameters
entering Eq. (71). By comparing both sides of Eq. (81) leads to obtain

a1±(γ) = − 2

3
(
1±

√
2
γ

) . (82)

The value γ ̸= 2 avoids singular behavior of a1−. Also, the following relationship for m is obtained,

m = −
(
1 +

2

3a1±

)
= ±

√
2

γ
=

2γ[n(1− s)− 1]

n
, (83)

and therefore,

n± =

√
2√

2 (1− s)∓ γ−3/2
. (84)

One of the advantages of the factorization method as opposed to different approaches is expressed through Eqs.
(83) and (84). The last equation provides the relationship between the parameters s, γ and n in such a way that by
fixing γ and s we get a particular value of n, thus the method provides the connection among the constant parameters
entering the factorized ODE.

1. Solution for γ ̸= 2

We find a particular solution of Eq. (80) by setting k1 = 0, so we consider the ODE

y′ − (c0 + c1y
m) y = 0, (85)

whose solution is given by

y(η) =
1

(C1e−c1mη − C2)
1/m

, (86)

where C1 is an integration constant, and

c0 = a1α1 = −3

2

(
1∓

√
2

γ

)
, c1 =

3a1α0

2
=

−α0(
1±

√
2
γ

) , C2 =
c1
c0

=
2γα0

3γ − 6
, γ ̸= 2. (87)

The parametric form of the time variable is given by the equation

t(η) =

∫
y−adη. (88)
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Therefore, the main dynamical variables are given in parametric form as follows

H = ya,

q = ya
d

dη

(
1

H

)
− 1,

Λ = 3βH2 = 3βy2a, β = 1− 2/n,

G = bH−nβ = by−2γβ , (89)

ρ = ρ0H
n = ρ0y

2γ ,

Π =
−
(
yaH ′ + 3

2H
2
)

4πG
,

T = T0ρ
γ−1
γ = T0y

2(γ−1),

f = exp (η) ,

Σ = −3

∫
Πf3HT−1 (ya)

−1
dη.

As we can see, the particular solution given by Eq. (86) is quite similar to the one obtained in Case 1 (see Eq.
(48)), except than here, the value of the constant parameters m, n, etc, take different values. For this reason, the
particular solution of the FE given by Eq. (89), shows a very similar behavior to the one provided in Eq. (52) which
has been previously discussed.

2. Solution for γ = 2

By assuming γ = 2 and s = 1/2, the following parameters are obtained: a1+ = −1/3, α1 = 0, n = 4 and β = 1/2.
Therefore, Eq. (80) simplifies as

y′ +
α0

2
y2 = k1e

−3η, (90)

with solution

y(η) =

√
2k1
α0

e−3η/2

(
2Y1(

1
3

√
2k1α0e

−3η/2) + k2J1(
1
3

√
2k1α0e

−3η/2)

2Y0(
1
3

√
2k1α0e−3η/2) + k2J0(

1
3

√
2k1α0e−3η/2)

)
, (91)

where Y1 is the Bessel function of second kind and order 1, J1 is the Bessel function of first kind and order 1, and k2
is an integration constant.
Therefore, according to Eq. (24)

t(η) =

∫ (√
2k1
α0

e−3η/2

(
2Y1(

1
3

√
2k1α0e

−3η/2) + k2J1(
1
3

√
2k1α0e

−3η/2)

2Y0(
1
3

√
2k1α0e−3η/2) + k2J0(

1
3

√
2k1α0e−3η/2)

))−1

dη. (92)

The main dynamical variables of the FE for this case are given in parametric form as follows

f = f0 exp (η) ,

H = y,

q = y
d

dη

(
1

y

)
− 1,

ρ = ρ0y
4,

Π = − 1

4πG

(
yH ′ +

3

2
H2

)
, (93)

T = T0ρ
1/2 = T0y

2,

Σ = − 3

kB

∫
Πf3HT−1y−1dη,

G = by−4β ,

Λ = 3βy2.
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We have plotted the solution (93) in Figs. (5) and (6) in order to analyze the dynamical behavior. The energy
density of the cosmological fluid, represented in Fig. (5) is a decreasing function of time. The bulk viscous pressure,
shown in Fig. (5), satisfies the condition Π < 0, only for time intervals greater than an initial value t∗. Hence, this
model can describe the dynamics of the causal bulk viscous Universe with variable gravitational and cosmological
constants only for a finite time interval when t > t∗. Furthermore, the solution is thermodynamically consistent since
the relationship |Π| /p ≪ 1 is verified. The evolution of the Universe starts in a non-expansionary phase, with the
deceleration parameter q > 0, represented in Fig. (5), but it enters into an inflationary phase quickly, so the Universe
ends in an inflationary epoch.
The behavior of the comoving entropy has been plotted in Fig. (6). As we can see, this quantity is growing so

the solution is thermodynamically consistent. The time variation of the cosmological and gravitational constants
is represented in Fig. (6). The gravitational constant G is always a time growing function, while the cosmological
constant is a positive decreasing function of time.

FIG. 5: Plots of the solution (93). Energy density ρ (t), bulk viscous pressure Π(t), and the entropy Σ(t), for γ = 2, s = 1/2,
k1 = 1, k2 = −1, and α0 = 1.

.

FIG. 6: Plots of solution (93). Deceleration parameter q(t), G(t) and Λ(t). Parameter values as in Fig. 5

IV. FACTORIZATION METHOD FOR APPROACH 2

In this Section, we study the Eq. (23) which is a nonlinear second order differential equation in ρ which depends
on an unknown function G(t). Therefore, in order to apply the standard procedure of the factorization method, in
Scheme 1, we impose the mathematical assumption G = G0ρ

n to obtain an ODE depending only on ρ. In order to
avoid such assumption, in Scheme 2, we develop a new factorization scheme that allows to construct the explicit form
of the time depending gravitational constant G. In both cases, we have been able to obtain particular solutions of
the monomial type G(t) ∼ tε.

A. Scheme 1

In this first scheme, we consider the assumption G = G0ρ
n, then Eq. (23) reads

ρ̈− 1

ρ
ρ̇2 +Dρ1−sρ̇+Bρn+2 = 0, (94)
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where D = 2(1−s)γ
α , and B = −G0A = − 12πG0(γ−χ)(χ−2)γ

χ > 0. Note that the case s = 1 must be studied separately

in order to avoid D = 0.
Assuming the factorization scheme provided in Eqs. (28)-(34), with independent variable replaced by the time

variable, the Eq. (94) admits the factorization[
Dt −

1

ρ
ρ̇− a1

√
Bρ

n+1
2

] [
Dt − a−1

1

√
Bρ

n+1
2

]
ρ = 0, (95)

where the following functions ϕi,

ϕ1 =
1

ρ
, ϕ2 = a1

√
Bρ

n+1
2 , and ϕ3 = a−1

1

√
Bρ

n+1
2 , (96)

with a1(̸= 0) a real arbitrary constant, have been introduced.
The explicit form of the constant a1 is obtained by substituting the functions ϕi into Eq. (31). Then, we get(

−a1
√
B − (1− s)a−1

1

√
B
)
ρ

n+1
2 = Dρ1−s, (97)

and thus

a1± = − 1

2
√
B

(
D ∓

√
4B (s− 1) +D2

)
. (98)

Also, the relationship n = 1− 2s should be satisfied.
For the chosen factorizing functions (96), the Eq. (34) of the factorization scheme provides the following result for

the function Ω = Ω(ρ, t),

Ω = κ1ρe
a1

√
B

∫
ρ

n+1
2 dt, (99)

where κ1 is an integration constant. Then, Eq. (95) turns into the equation

ρ̇−
√
B

a1
ρ

n+3
2 = κ1e

a1

√
B

∫
ρ

n+1
2 dtρ, (100)

whose solution is also solution of Eq. (94). The general solution of Eq. (100) is obtained in parametric form by
performing the following transformation of the independent variable

dν = ρ
n+1
2 dt, (101)

which leads to the differential equation

dρ

dν
−

√
B

a1
ρ = κ1e

a1

√
Bνρ

1−n
2 , (102)

with general solution given in the form

ρ(ν) =

[
a1κ1(1 + n)√
B(2a21 − 1− n)

e
√
Ba1ν + κ2e

√
B(1+n)ν

2a1

] 2
1+n

, (103)

where κ2 is an integration constant. The parametric form of the time variable is obtained via the equation

t(ν) =

∫
ρ−

n+1
2 (ν)dν. (104)
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The main FE variables are given in parametric form as follows

ρ =

[
a1κ1(1− s)√
B(a21 + s− 1)

e
√
Ba1ν + κ2e

√
B(1−s)ν

a1

] 1
1−s

,

G = G0ρ
1−2s,

Π = −χρ,

H = H0ρ
1−s,

f = eH0ν , (105)

q = ρ1−s d

dν

(
1

H

)
− 1,

Λ = −8π

∫
dG

dν
ρdν,

T = T0ρ
1− 1

γ ,

Σ = − 3

kB

∫ ν Πf3H

Tρ
n+1
2

dν.

The solution is new and it is valid for s ∈ [0, 1), that is, s ̸= 1 and γ ∈ [1, 2], under the assumption G = G0ρ
n. In

order to understand the solution (105), we have plotted the behavior of the main quantities in Figs. (7) and (8) by
setting the following values for the constant parameters: γ = 4/3, χ = .3, α = .038, G0 = 1, κ1 = 100, κ2 = .1, and
s = .4 (dashed line), s = .5 (solid line), s = .7 (dotted line).
In Fig. (7) we can see that the energy density of the cosmological fluid is a decreasing function of time in all the

studied cases. The bulk viscous pressure satisfies the condition Π < 0, thus this solution may describe the dynamics
of the causal bulk viscous Universe with variable gravitational and cosmological constants. In this solution, with the
fixed numerical values, the ratio of the bulk viscous pressure and the thermodynamical pressure is lesser than one,
that is, |Π|/p = .9 < 1. Consequently, during this period the model is consistent thermodynamically. The behavior
of the comoving entropy has been plotted in Fig. (7). As we can see, this quantity is always growing, in fact it grows
quickly in all the cases.
The evolution of the Universe, represented by the deceleration parameter q(t) in Fig. (8), starts in a non-accelerating

phase and ends in an inflationary phase (q < 0) in two cases. The time variation of the cosmological and gravitational
constants is also shown in Fig. (8). The gravitational constant G behaves as a growing time function if s > 1/2, it
is constant, G = G0, for s = 1/2, and decreases for s < 1/2. The cosmological constant Λ behaves like a decreasing
time function, but its sign depends on the value of s in such a way that it is positive for s > 1/2, vanishes for s = 1/2
and it is negative for s > 1/2.

FIG. 7: Plots of solution (105). Energy density ρ (t), bulk viscous pressure Π(t), and the entropy Σ(t), for γ = 4/3, χ = .3,
α = .038, G0 = 1, κ1 = 100, κ2 = .1, and s = 0.4 (dashed line), s = 0.5 (solid line), s = 0.7 (dotted line).

Furthermore, the following particular solution (power-law solution) of Eq. (100) is obtained for κ1 = 0,

ρ(t) = 4
1

2(1−s)

[
−(1 + n)

(√
B

a1
t+ κ2

)]− 1
(1−s)

, (106)

where κ2 is an integration constant.
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FIG. 8: Plots of solution (105). Deceleration parameter q(t), G(t) and Λ(t). Parameter values as in Fig. 7.

The main FE quantities are given for κ2 = 0 as follows

ρ(t) = ρ0t
1

s−1 , ρ0 = 4
1

2(1−s)

(
−2(1− s)

√
B

a1

)− 1
(1−s)

,

G(t) = G0ρ
1−2s(t) = G1t

1−2s
s−1 , G1 = G0ρ

1−2s
0 ,

Π(t) = −χρ(t),

H(t) = H0ρ
(1−s)(t) = H0t

−1, H0 =

(
3ρ

2(1−s)
0

4π(1− s)

)1/2

, (107)

f(t) = f0t
H0 ,

q(t) =
d

dt

(
1

H(t)

)
− 1 =

1

H0
− 1,

Λ(t) = −8π

∫
Ġ(t)ρ(t)dt = Λ0t

−2,

Σ(t) = − 3

kB

∫ t

t0

Π(t)f3(t)H(t)

T (t)
dt =

−3Σ0 (n+ 1)

− 2
γ + 3H0 (1 + n)

t
1

n+1 (−
2
γ +3H0(1+n)),

where Σ0 =
(
−χf3

0H0T
−1
0

)
< 0, and s ̸= 1. Also, in order to obtain firm results from the thermodynamical point of

view we can consider the condition ∣∣∣∣Πp
∣∣∣∣≪ 1, χ < γ − 1, (108)

although it is not strictly necessary.

FIG. 9: Plots of solution (107). Energy density ρ (t), bulk viscous pressure Π(t), and the entropy Σ(t), for γ = 4/3, χ = 1.32,
α = 1, G0 = 1, κ2 = 0, and s = 0.4 (dashed line), s = 0.5 (solid line), s = 0.7 (dotted line).

The solution is valid for s ∈ [0, 1) and γ ∈ [1, 2] . In order to understand the solution (107), we have plotted the
behavior of the main quantities in Figs. (9) and (10) by setting the following values for the constant parameters:
γ = 4/3, χ = 1.32, α = 1, G0 = 1, κ1 = 1, κ2 = 1, and s = 0.4 (dashed line), s = 0.5 (solid line), s = 0.7 (dotted
line). As we can see in Fig. (9), the energy density of the cosmological fluid is a decreasing function of time in all
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FIG. 10: Plots of solution (107). Deceleration parameter q(t), G(t) and Λ(t). Parameter values as in Fig. 9

the studied cases. Also, the bulk viscous pressure satisfies the condition Π < 0, thus this solution may describe the
dynamics of the causal bulk viscous Universe with variable gravitational and cosmological constants. But in this
solution, for the fixed numerical values, the ratio of the bulk viscous pressure and the thermodynamical pressure is
greater than one, that is, |Π| /p = χ/(γ − 1) ≫ 1, since we have set χ = 1.32. Consequently, the solution is not
consistent thermodynamically. The behavior of the comoving entropy has been plotted in Fig. (9). As it can be seen,
this quantity is always growing, but it grows faster in the case s = 1/2.
The evolution of the Universe is noninflationary, with deceleration parameter q > 0, for the cases s ≤ 1/2, although

it is inflationary for s = 0.7. This behavior is shown in Fig. (9). The time variation of the cosmological and
gravitational constants is also shown in Fig. (10). The gravitational constant G is a growing time function for
s > 1/2, constant for s = 1/2, and decreasing for s < 1/2. The cosmological constant is a positive decreasing
function of time if s > 1/2, vanishes for s = 1/2 (G = G0), and it is negative for s < 1/2. In this solution, we have
obtained, G(t) ∼ tε, thus this means that ∆G = G′/G ∼ εt−1

0 , with ε = (1 − 2s)/(s − 1). By taking an average
estimation for the age of the universe as t0 = 1.3798 ± 0.037 × 1010yr [56], we obtain different results for different
values of s ∈ [0, 1). Note that ∆G depends on the value of the estimation of the Hubble parameter. Therefore,
−7.24742× 10−11yr−1 ≤ ∆G ≤ 5.79794× 10−10yr−1; for example, for s = 0.6, ∆G = 3.62371× 10−11yr−1, which is
in agreement with [57] and [58], while for s = 0.4, ∆G = −2.4158× 10−11yr−1, which is in agreement with [59].
The main difference between the particular solution given by Eq. (107) and the general solution given by Eq. (105)

is reflected in the behavior of the quantities entropy and deceleration parameter q(t). In the particular solution the
entropy grows slowly, while in the general solution it grows quickly in all the studied cases. Regarding the deceleration
parameter, we have shown that for some choices of numerical values of the parameters, the particular solution may
behave as not inflationary, while in the general case (see Fig. (10)) all the solutions end in an accelerating era.

B. Scheme 2

A very interesting scheme, in this second approach, is developed by studying the factorization of the variable
coefficient nonlinear ODE for the energy density

ρ̈− 1

ρ
ρ̇2 +Dρ1−sρ̇−AG(ρ, t)ρ2 = 0, (109)

with the constant coefficients D = 2(1−s)γ
α and A = 12π(γ−χ)(χ−2)γ

χ < 0. Since we assume ρ = ρ(t), the gravitational

constant is conveniently written as G = G(ρ, t), which is indirectly a function of t.
The factorization method allows to get a complete solution by developing an explicit form of the arbitrary function

G = G(ρ, t). Let us consider the following factorization in differential operators applied to ρ(t)

[Dt − ϕ1(ρ, t)ρ̇] [Dt − ϕ2(ρ, t)] ρ = 0, (110)

where Dt =˙= d
dt . The operators are developed in Eq. (110) to find the equation

ρ̈− ϕ1ρ̇
2 −

(
∂ϕ2

∂ρ
ρ+ ϕ2 − ϕ1ϕ2ρ

)
ρ̇− ∂ϕ2

∂t
ρ = 0. (111)

Therefore, in order to factorize Eq. (109) in the form (110), the following restriction equations are obtained by
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comparing Eqs. (109) and (111),

ϕ1 =
1

ρ
, (112)

ϕ2 − ϕ1ϕ2ρ+
∂ϕ2

∂ρ
ρ = −Dρ1−s, (113)

∂ϕ2

∂t
= AG(ρ, t)ρ. (114)

Eqs. (112) and (113) generate the function

ϕ2(ρ, t) =
D

s− 1
ρ1−s + T (t), (115)

then, from Eq. (114) we get

∂ϕ2

∂t
= Ṫ (t) = AG(ρ, t)ρ, (116)

which implies

G(ρ, t) = G1(t)ρ
−1, (117)

where G1(t) is an arbitrary function of t, and

T (t) = A

∫
G1(t)dt. (118)

Assuming the equation

[Dt − ϕ2(ρ, t)] ρ = Ω(ρ, t), (119)

then, from Eq. (110) we get

Ω̇− ρ̇

ρ
Ω = 0, (120)

with solution Ω = k0ρ, where k0 is an integration constant. Therefore, from Eq. (119) we get the nonlinear first order
ODE

ρ̇− D

s− 1
ρ1−s +

(
A

∫
G1(t)dt

)
ρ = k0ρ. (121)

The general solution of Eq. (121) is also solution of Eq. (109), and it is given by

ρ(t) = eζ1
(
D

∫
eζ2dt+ k1

)(1/(s−1))

, (122)

where

ζ1 = A

∫ ∫
G1(t)dtdt+ k0t (123)

ζ2 = (s− 1)

∫ (
−A

∫
G1(t)dt− k0

)
dt, (124)

and k1 is an integration constant.
We can obtain solutions for different choices of the function G1(t) and the integration constants. As an example,

we choose

G1(t) =
1

t2
, k0 = 0, (125)
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such that

A

∫ ∫
G1(t)dtdt = −A ln t, (126)

then, we get

ρ(t) = t−A

(
D

∫
1

t−A(s−1)
dt+ k1

)(1/(s−1))

, (127)

and by setting k1 = 0,

ρ(t) = ρ0t
1/(s−1), where ρ0 =

(
D

A (s− 1) + 1

)(1/(s−1))

, (128)

which is equivalent to the solution (107) obtained in the previous section and discussed in [42].

V. CONCLUSIONS.

We have studied a full causal bulk viscous cosmological model with time varying constants G(t) and Λ(t). The
geometry of the universe is described by a spatially flat FRW metric. In order to derive the FE we have assumed
that the Bianchi identity is verified (see Eq. (4)), as well as the matter conservation described by Eq. (6). We have
studied two phenomenological approaches that allow us to obtain nonlinear second order ODE, Eq. (18) and Eq.
(23), which describe the dynamics of the cosmological model. We would like to emphasize the fact that one of the
advantages of the factorization method, as opposed to different approaches followed by other authors, is that it allows
us to obtain relationships between the free parameters entering the ODE (γ, s, n, etc). Another advantage is that it
is a well established method to find exact solutions through algebraic procedures to nonlinear ODE. In this way, we
have been able to find new parametric exact solutions of the FE. Furthermore, a new factorization scheme to generate
exact solutions of a kind of nonlinear second order ODE with variable coefficients has been developed in Section IVB.
These results have not been previously reported. Further results are currently under study.
For the first approach, developed in Section III, we have obtained the following solutions of the FE by departing

from the Eq. (18) for the Hubble function H(t). In Case 1, which is the most general case, the solution is valid for
γ ∈ [1, 2) and s ∈ [0, 1] (see Eq. (52)), and it predicts that G and Λ vary as functions of the time, but in the long time
limit they tend to a constant value, that is G = G0, and Λ takes values very close to zero. The mathematical solutions
do not allow us to know if G is growing or decreasing, both cases are allowed (they are thermodynamically consistent,
with ρ decreasing, Π < 0, etc.) and they are in agreement with the observations, since some of them conclude that
G is growing while another ones indicate that G is decreasing (see for instance [28] or for a short review [60]). We
take into account some observational data which indicate us that Λ > 0 (see [61, 62]). Then, we consider those
solutions in agreement with these observations (Λ > 0), and conclude that G is growing in the very early universe,
since the behavior of Λ and G are related by Eq. (6) derived from the Bianchi identity; we conclude that if G is
growing then Λ > 0, if G is decreasing then Λ < 0, and if G behaves as a true constant then Λ vanishes. Therefore,
in another theoretical framework, as for example the JBD model, it is possible to arrive at different conclusions (see
for example [63]). Since this solution is not valid for γ = 2, in Case 2 we have studied the solution for such a specific
and important case, the ultra stiff matter. In this case (see Eq. (70)), the solution is valid for γ = 2 and s ∈ [0, 3/4).
Nevertheless, the behavior of G and Λ are completely different from the first case: G is always growing (Λ > 0) or
decreasing (Λ < 0), but they do not tend to a constant value. Only in the case of s = 1/4 we find that G = G0 and
therefore Λ = 0. In Case 3, we have studied some particular cases of the original equation (25). Under the assumption
a = 2γ/n, we make A1 = 0, so Eq. (25) considerably simplifies. Under this hypothesis we have found three solutions.
In the first of them, the solution given by Eq. (89) is quite similar (but not identical) to the one given in Eq. (52),
and therefore, we arrive to similar conclusions. In the second solution given by Eq. (93), we set γ = 2 and s = 1/2. In
this case, G is always growing while Λ behaves as a positive time decreasing function. To the best of our knowledge
these solutions have not been previously reported in the literature.
In the second approach, developed in Section IV, we have studied Eq. (23) for the energy density ρ(t). We have

obtained two solutions. The first of them is provided in Eq. (105) and is valid for γ ∈ [1, 2] and s ∈ [0, 1), that is, s ̸= 1.
It is a new general solution of Eq. (23). We find that G could be growing (Λ > 0) as well as decreasing (Λ < 0), and
they behave as constants (G = G0, Λ = 0) only in the particular case where s = 1/2. The second solution, provided
in Eq. (107), is a particular solution of Eq. (23), and it has been previously reported in the literature in Ref. [42]. It
shows a similar behavior to solution (105) with regard to G and Λ, but not with regard to the deceleration parameter
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with non-inflationary solutions. In Section IVB, we have ended our study of this cosmological model by presenting a
new factorization scheme, which allows us to generate new exact solutions to the nonlinear second order ODE with
variable coefficients (109) for the energy density ρ(t). As a specific case, a power law solution previously reported in
the literature [42] has been obtained.
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