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Slashed generalized exponential distribution

Juan M. Astorga∗ Héctor W. Ǵomez† Heleno Bolfarine‡

Abstract

In this paper, we introduce an extension of the generalized exponential distribution, making

it more robust against possible influential observations. The new model is defined as the quo-

tient between a generalized exponential random variable and a beta distributed random variable

with one unknown parameter. The resulting distribution is a distribution with greater kurtosis

than the generalized exponential distribution. Probability properties of the distribution such as

moments and asymmetry and kurtosis are studied. Likewise, statistical properties are inves-

tigated using the method of moments and the maximum likelihood approach. Two real data

analyses are reported illustrating better performance of the new model over the generalized

exponential model.

KEY WORDS: Generalized exponential distribution, kurtosis, maximum likelihood, slash distri-

bution.
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1 Introduction

The ordinary slash distribution is closely related to the normal distribution. Its stochastic represen-

tation is the quotient between two independent random variables, a normal one in the numerator

and the power of a uniform distributed random variable in the denominator. More specifically, it is

said that a random variableS follows a standard slash distribution with shape parameterq if

S = Z/U
1
q , (1)

whereZ ∼ N(0,1), U ∼ U(0,1), Z is independent ofU andq > 0 (see Johnson, Kotz and Bal-

akrishnan 1995). This distribution presents heavier tails than the normal distribution, that is, more

kurtosis. Properties of this distribution are discussed in Rogers and Tukey (1972) and Mosteller

and Tukey (1977). Maximum likelihood estimation for a location-scale extension of the standard

slash distribution is considered in Kadafar (1982). Asymmetric and symmetric multivariate ver-

sions were considered in Wang and Genton (2006). Gómez et al. (2007) and Ǵomez and Venegas

(2008) extend the ordinary slash distribution by replacing the normal distribution in the numerator

by the family of univariate and multivariate elliptical distributions. Several extensions of distri-

butions with positive support using such methodology were considered in Gómez et al. (2009),

Olivares-Pacheco et. al. (2010), Olmos et al. (2012, 2014) and Iriarte et al. (2015).

On the other hand, the generalized exponential distribution was studied in Gupta and Kundu

(1999), which is a particular case of the exponentiated Weibull distribution, with zero location,

introduced by Mudholkar et al. (1995). Thus, a random variableX follows the generalized expo-

nential distribution with scale parameterλ and shape parameterα if its density function is given

by

f (x; λ, α) = αλ
(
1− e−λx

)α−1
e−λxI {x > 0}, (2)

with λ > 0 andα > 0, hereafter denotedX ∼ GE(λ, α). More recently, this distribution has been

used in different areas by several authors including Gupta and Kundu (2001a, 2001b, 2002, 2007),

Mitra and Kundu (2008) and Kundu and Gupta (2008), among others.
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The main object of this note is to introduce another extension of the generalized exponential

distribution by “slashing” it, that is by using the slash idea for generating new positive distributions,

with possibly greater kurtosis.

The paper is organized as follows. Section 2 deals with the stochastic representation for the

new distribution and studies its moments, and asymmetry and kurtosis coefficients. In Section 3

we develop moments and maximum likelihood estimation. In Section 4, we perform a small scale

simulation study of the maximum likelihood estimators for parameters of the new distribution, the

main conclusion is that the approach yields good parameter recovery. Section 5 is dedicated to

present an analysis of two real data sets illustrating the performance of the proposed methodology.

Final remarks and conclusions are deferred to Section 6.

2 Density function and properties

In this section we introduce the stochastic representation, density function, properties and plots of

the new distribution.

2.1 Stochastic representation

The stochastic representation for the new distribution is given by

Z =
X
Y
, (3)

whereX ∼ GE(λ, α) andY ∼ Beta(q,1) are independent,λ > 0, α > 0, q > 0 and the distribution

of Z, hereafter called the slashed generalized exponential distribution. We denote this byZ ∼

SGE(λ, α, q).

2.2 Density function

The following proposition reveals the pdf for the SGE distribution, which is generated using the

representation given in (3).
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Proposition 1 Let Z∼ SGE(λ, α, q). Then, the pdf of Z is given by

fZ(z; λ, α, q) =
αq

λqzq+1
J(α,q)

(
1− e−λz

)
, (4)

whereλ > 0,α > 0, q > 0, z> 0 and J(α,q)(t) =
∫ t

0
logq

(
1

1−u

)
uα−1du.

Proof. Using the representation given in (3) and computing the Jacobian of the required transfor-

mation, we have that

Z = X
Y

W = Y




⇒

X = ZW

Y = W




⇒ J =

∣∣∣∣∣∣∣∣

∂X
∂Z

∂X
∂W

∂Y
∂Z

∂Y
∂W

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

w z

0 1

∣∣∣∣∣∣∣∣
= w

fZ,W(z,w) = |J| fX,Y(zw,w)

fZ,W(z,w) = w fX(zw) fY(w) , 0 < w < 1 , z> 0,

so that marginalizing with respect to the random variableW we obtain the density function corre-

sponding to the random variableZ, namely

fZ(z; λ, α, q) = λαq
∫ 1

0
wq(1− e−λzw)α−1e−λzwdw.

Finally, making the variable transformationu = 1− e−λzw and working inside the integral the result

follows �.

Particularly, ifλ = α = q = 1, the canonic slashed generalized exponential distribution follows,

denoted byZ ∼ SGE(1,1,1). Then, the density function of Z is given by

fZ(z) =
1
z2

(1− e−z− ze−z) , z> 0. (5)

2.3 Probabilistic properties

In this subsection, we study basic properties of the SGE distribution. LetZ ∼ SGE(λ, α, q), so that

1. lim
q→∞

fZ (z; λ, α, q) = αλ
(
1− e−λx

)α−1
e−λxI {x > 0};

2. lim
q→0

fZ (z; λ, α, q) = 0.
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Another important property is stated and proved next.

Proposition 2 Let Y|U = u ∼ GE(u1/qλ, α) and U∼ U(0,1) then Y∼ SGE(λ, α, q).

Proof. We can write

fY(y; λ, α, q) =
∫ 1

0
fY|U(y|u) fU(u)du=

∫ 1

0
αu1/qλ

(
1− e−u1/qλy

)α−1
e−u1/qλydu

The result follows then by making the variable changet = 1− e−u1/qλy �.

Remark 1 Property 1 reveals that this distribution has as a special limiting case the general-

ized exponential distribution. On the other hand, Proposition 2 reveals that the distribution is a

scale mixture of the generalized exponential distribution and the uniform distribution in the(0,1)

interval.

2.4 Moments

We present a general formula for ther-moment of the SGE distribution.

Proposition 3 Let Z ∼ SGE(λ, α, q). Then, for r= 1,2, ... and q > r it follows that the r-th

moment of Z can be written as

μr = E(Zr) =
αqΓ(r + 1)
(q− r)λr

∞∑

i=0

(−1)i
c(α − 1, i)
(i + 1)r+1

, (6)

where c(α − 1, i) = (α−1)×...×(α−i)
i! .

Proof. Using the stochastic representation for the distribution given in (3), we have that

μr = E (Zr) = E

((X
Y

)r)

= E
(
XrY−r) = E (Xr) E

(
Y−r) ,

where E (Y−r) = q
q−r , q > r andE (Xr) = αΓ(r+1)

λr

∑∞
i=0 (−1)i c(α−1,i)

(i+1)r+1 are the moments of theGE(λ, α)

distribution �.
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Proposition 4 If Y ∼ SGE(λ, α, q), then the moments generating function for the random variable

Y is given by

MY(t) =
q
λq

∫ λ

0

Γ(α + 1)Γ(1− t
w)

Γ(α − t
w + 1)

wq−1dw. (7)

Proof. Using Proposition 2, we can write

MY(t) = E(etY) = E(E(etY|U)) = E

(
Γ(α + 1)Γ(1− t

U1/qλ
)

Γ(α − t
U1/qλ

+ 1)

)

=

∫ 1

0

Γ(α + 1)Γ(1− t
u1/qλ

)

Γ(α − t
u1/qλ

+ 1)
du

and hence the result follows making the variable transformationw = u1/qλ �.

Corollary 1 If Z ∼ SGE(λ, α, q) then, it follows that

1. μ1 = E(Z) = q(d1)
λ(q−1) ,q > 1;

2. μ2 = E(Z2) =
q(d2+d2

1)

λ2(q−2) ,q > 2;

3. μ3 = E(Z3) =
q[d3+3d1d2+d3

1]

λ3(q−3) ,q > 3;

4. μ4 = E(Z4) =
q[d4+3d2

2+4d1d3+6d2
1d2+(d1)4]

λ4(q−4) ,q > 4;

5. Var(Z) = q
λ2

[
(d2+d2

1)
q−2 −

qd2
1

(q−1)2

]
,q > 2,

where

d1 = ψ(α + 1)− ψ(1), d2 = ψ′(1)− ψ′(α + 1), d3 = ψ′′(α + 1)− ψ′′(1) d4 = ψ′′′(1)− ψ′′′(α + 1)

andψm(x), is the polygamma function of order m.

Corollary 2 Let Z ∼ SGE(λ, α, q), then the asymmetry coefficient, (
√
β1) and the kurtosis coeffi-

cient (β2) for q > 3 and q> 4 are, respectively,

√
β1 =

A1
√

q(q− 3)[(q− 1)2(d2 + d2
1) − q(q− 2)d2

1]
3
2

, q > 3,

where

A1 =
√

(q− 2)[(q−1)3(q−2)(d3+3d1d2+d3
1)−3q(q−1)2(q−3)(d1d2+d3

1)+2q2(q−2)(q−3)d3
1].

6
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β2 =
C1

(q− 3)(q− 4)[q(q− 1)4(d2 + d2
1)2 − 2q2(q− 1)2(q− 2)(d2

1d2 + d4
1) + q3(q− 2)2d4

1]
, q > 4,

where

C1 = (q− 2)[(q− 1)4(q− 2)(q− 3)(d4 + 3d2
2 + 4d1d3 + 6d2

1d2 + d4
1)− 4q(q− 1)3(q− 2)(q− 4)(d1d3 +

3d2
1d2 + d4

1) + 6q2(q− 1)2(q− 3)(q− 4)(d2
1d2 + d4

1) − 3q3(q− 2)(q− 3)(q− 4)d4
1].

Remark 2 The asymmetry and kurtosis coefficients were obtained using:

√
β1 =

μ3 − 3μ1μ2 + 2μ3
1

(μ2 − μ2
1)

3
2

and β2 =
μ4 − 4μ1μ3 + 6μ2μ

2
1 − 3μ4

1

(μ2 − μ2
1)

2
.

Remark 3 Figure 2 and 3 depicts plots for the asymmetry and kurtosis coefficients of the distri-

bution GE(λ, α) and SGE(λ, α, q) respectively. Notice that asymmetry and kurtosis coefficients

are larger in SGE model that in GE model, and these ones no depend ofλ becauseλ is a scale

parameter.

3 Inference

3.1 Moment estimators

Rewriting the first moment withλ isolated and replacing E(Z) by the sample meanZ̄, we have the

equation

λ =
q(d1)

Z(q− 1)
. (8)

Therefore, using (8) and replacing the second and third population moments by the corresponding

second and third sampling moments we obtain the following equations:

Z2 =
(d2 + d2

1)(q− 1)2Z
2

qd2
1(q− 2)

; (9)

7
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Z3 =
(d3 + 3d1d2 + d3

1)(q− 1)3Z
3

q2d3
1(q− 3)

. (10)

The system of equations generated by (9) and (10) needs to be solved numerically usingMAPLE,

for example, leading to the estimatorsα̂ and q̂. The estimator̂λ, is obtained from equation (8),

replacingq by q̂ and computingd1 by using estimator̂α.

3.2 Maximum likelihood estimators

In this section, it is presented the maximum likelihood equations for parameters (λ, α, q) of the

SGE model. BeingZ1,Z2, . . . ,Zn a random sample from random variableZ ∼ SGE(λ, α, q), the

log-likelihood function can be expressed as

logL(λ, α, q) = c(λ, α, q) − (q+ 1)
n∑

i=1

log(zi) +
n∑

i=1

log(J(α,q)

(
1− e−λzi

)
), (11)

wherec(λ, α, q) = −nqlog(λ) + nlog(α) + nlog(q).

The maximum likelihood estimators are obtained by maximizing the log-likelihood function

given in (11). Deriving the log-likelihood function with respect to each parameter, the following

estimating equations are obtained:

n∑

i=1

J1(zi)
J(zi)

=
nq
λ

; (12)

n∑

i=1

J2(zi)
J(zi)

=
−n
α

; (13)

n∑

i=1

J3(zi)
J(zi)

= nlog(λ) −
n
q
+

n∑

i=1

log(zi); (14)

whereJ(zi) = J(α,q)

(
1− e−λzi

)
is defined in (4),J1(zi) =

∂J(zi )
∂λ

, J2(zi) =
∂J(zi )
∂α

andJ3(zi) =
∂J(zi )
∂q .

Equations (12),(13) and (14) must be solved using numerical procedures as, for example, the func-

tion optim in softwareR.
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Given the complexity of the likelihood function, it is possible to work with the observed infor-

mation matrix to compute estimates of the large sample variances for parameter estimates. This

matrix is obtained by computing the Hessian matrix and evaluating it at the maximum likelihood

estimates. It follows after lengthy algebraic manipulations that the Hessian matrix is given by

Hn(λ, α, q) =




nq
λ2 +

∑n
i=1

d
dλ

J1(zi )
J(zi )

∑n
i=1

d
dα

J1(zi )
J(zi )

−n
λ
+

∑n
i=1

d
dq

J1(zi )
J(zi )

∑n
i=1

d
dλ

J2(zi )
J(zi )

−n
α2 +

∑n
i=1

d
dα

J2(zi )
J(zi )

∑n
i=1

d
dq

J2(zi )
J(zi )

−n
λ
+

∑n
i=1

d
dλ

J3(zi )
J(zi )

∑n
i=1

d
dα

J3(zi )
J(zi )

−n
q2 +

∑n
i=1

d
dq

J3(zi )
J(zi )

.




.

The observed information matrix is given byHn(λ̂, α̂, q̂).

4 Simulation study

In this section a simulation study is conducted aiming at investigating maximum likelihood esti-

mation performance for parametersλ, α andq under the SGE model. Using Algorithm 1 (below),

1000 random samples of sizesn = 50, 100 and 200 were generated under the SGE model with

different parameter values. A summary of the results from the study are depicted in Table 2. Em-

pirical means corresponds the estimated parameters means over the 1000 simulated samples and

SD the empirical standard deviation over the 1000 simulated samples. One of the main conclu-

sions is that as sample size increase, estimates become closer to the true parameter values. Further,

results indicate that estimated standard errors become smaller as sample size increases.

We present next Algorithm 1, used to generate samples fromZ ∼ SGE(λ, α, q).

Algorithm 1

1. GenerateU ∼ U(0,1);

2. ComputeX =
−log(1−U

1
α )

λ
;

3. GenerateY ∼ U(0,1);

4. ComputeZ = X

Y
1
q
,

9
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5 Real Data Illustration

In this section, we present two illustrations using real data sets aiming at comparing in terms of

model fitting the SGE and GE (generalized exponential) models. Comparisons are made using the

likelihood approach, namely the likelihood ratio statistics and AIC and BIC type criteria.

5.1 Illustration 1

The first data set was previously analysed in Chhikara and Folks (1977). It corresponds to the

46 active repair times (in hours) for an airborne communication transceiver with the following

observed values: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1,

1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0,

7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

Table 3 presents summary statistics for the above data set whereb1 and b2 correspond to the

asymmetry and kurtosis coefficients, respectively. We call attention to the fact that the sample

kurtosis is higher than expected with the exponential and GE distributions.

Computing initially the moment estimators under the SGE model we have the following estimates:

λ̂M = 0.489, α̂M = 1.182 and̂qM = 2.706. Using the moment estimators as initial values, the

maximum likelihood estimates are computed and presented in Table 4, for models GE and SGE

jointly with the values for the AIC and BIC criteria.

Figure 4 depicts plots of the fitted GE and SGE models using the maximum likelihood estimates.

Notice that model the fitted SGE model present heavier tails than the GE model. The QQ-plots

for both models are presented in Figure 5. When SGE and GE models are compared using the

LR statistics, the value of the corresponding statistic is 7.472 (p-value<0.004), which allows us to

establish that the SGE model is more appropriate than the GE model for this data.

5.2 Illustration 2

The second illustration represents the remission times (in months) of a random sample of 128

bladder cancer patients (Lee and Wang, 2003). The observed data set is as follows: 0.08, 2.09,

10
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3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57,

5.06,7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70,

5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,

7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66,1.05, 2.69, 4.23, 5.41,

7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,

11.25,17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,

1.46, 4.40, 5.85, 8.26, 11.98, 19.13,1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,

12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65,12.63, 22.69.

Table 5 shows descriptive statistics corresponding to the remission times. Notice that sample

kurtosis is high.

Based on the sample above, moment estimators for the parameters of the SGE model areλ̂M =

0.134, α̂M = 0.95 and̂qM = 4.333. Using these estimates as initial values, maximum likelihood

estimates were computed for models SGE and GE and are reported in Table 6. Also shown are the

estimated likelihood and AIC and BIC values for each model.

Figure 6 shows plots of estimated densities for models GE and SGE, with the latter model present-

ing heavier tails. QQ-plots for both models are presented in Figure 7. When SGE and GE models

are compared by the LR test, the value of the corresponding statistic is 6.136 (p-value<0.007),

which allows us to establish that the SGE model is more appropriate than the GE model for these

data.

6 Concluding Remarks

In this paper we introduced a new extension of the generalized exponential (GE) distribution with

a more flexible kurtosis coefficient. It is defined as the quotient between a GE random variable

and the power of a uniform random variable. We call this distribution as the slashed generalized

exponential (SGE) distribution. The GE model is a particular case. Real data illustrations indicate

good performance of the proposed model.
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Table 1: Asymmetry and kurtosis coefficients for several parameter values of the SGE distribution.
α q

√
β1 β2

1 5 2.7186 21.9799
2 2.4079 20.0177
3 2.3344 20.1550
1 6 2.3896 14.0118
2 2.0402 11.8975
3 1.9317 11.4656
1 7 2.2456 11.7411
2 1.8794 9.6518
3 1.7553 9.1002
1 10 2.0945 9.8986
2 1.7119 7.8890
3 1.5724 7.2808
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Table 2: Empirical means and SD for the MLE estimators ofλ, α andq.
n = 50

λ α q λ̂ (SD) α̂ (SD) q̂ (SD)
3.0 3.0 1.0 3.2621 (1.4544) 3.3869 (1.4836) 1.1197 (0.3880)

2.0 3.2747 (1.6440) 3.3507 (1.3115) 2.3147 (1.2725)
3.0 3.0658 (1.1807) 3.5043 (1.7394) 3.5512 (1.6306)

3.0 4.0 1.0 3.1889 (1.3702) 4.6917 (2.8133) 1.1430 (0.5340)
5.0 3.1375 (1.2163) 5.8613 (2.8017) 1.1193 (0.3069)
6.0 3.2447 (1.5147) 6.8845 (3.7011) 1.1012 (0.2621)

4.0 3.0 1.0 4.2271 (1.8242) 3.9785 (1.8378) 1.2022 (0.5815)
5.0 5.3436 (2.2076) 3.7851 (2.1606) 1.1604 (0.8336)
6.0 6.3449 (2.6961) 3.8717 (2.1751) 1.1789(0.6789)

n = 100
λ α q λ̂ (SD) α̂ (SD) q̂ (SD)

3.0 3.0 1.0 3.1061 (0.8544) 3.3524 (1.2755) 1.0520 (0.1779)
2.0 3.0693 (0.8022) 3.2605 (0.9821) 2.2905 (1.0257)
3.0 3.0446 (0.7568) 3.2231 (0.8709) 3.4748 (1.5832)

3.0 4.0 1.0 3.1072 (0.8953) 4.6452 (2.5287) 1.0452 (0.1636)
5.0 3.0126 (0.7916) 5.6185 (2.7968) 1.0631 (0.1651)
6.0 3.0114 (0.7476) 6.7685 (3.6749) 1.0559 (0.1527)

4.0 3.0 1.0 4.0459 (1.1929) 3.2764 (1.4254) 1.0622 (0.1806)
5.0 5.0910 (1.4557) 3.3379 (1.2697) 1.0648 (0.1789)
6.0 6.1330 (1.7665) 3.3478 (1.5325) 1.0658(0.1745)

n = 200
λ α q λ̂ (SD) α̂ (SD) q̂ (SD)

3.0 3.0 1.0 3.0436 (0.6302) 3.1569 (0.7862) 1.0298 (0.1272)
2.0 3.0525 (0.5174) 3.1254 (0.5796) 2.1227 (0.5692)
3.0 2.9961 (0.3555) 3.0450 (0.3603) 3.2773 (0.9974)

3.0 4.0 1.0 2.9705 (0.5894) 4.1315 (1.1579) 1.0326 (0.1154)
5.0 3.0124 (0.5890) 5.3431 (1.7450) 1.0340 (0.1071)
6.0 2.9697 (0.5571) 6.2757 (1.9706) 1.0352 (0.1126)

4.0 3.0 1.0 3.9919 (0.8222) 3.0871 (0.7677) 1.0321 (0.1155)
5.0 4.9758 (1.0249) 3.0782 (0.7568) 1.0345 (0.1217)
6.0 6.0281 (1.1897) 3.1224 (0.7308) 1.0288(0.1227)
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Table 3: Descriptive statistics for the repair times.

n X s2 b1 b2

46 3.607 24.445 2.888 11.803
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Table 4: Maximum likelihood estimates for models GE and SGE and AIC and BIC values for the
repair times.

Parameters GE(SD) SGE(SD)
λ̂ 0.269(0.054) 1.523(1.212)
α̂ 0.958(0.190) 2.238(1.457)
q̂ - 1.138(0.479)

Loglikelihood -104.983 -101.247
AIC 213.966 208.494
BIC 217.623 213.980
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Table 5: Descriptive statistics for remission data.

n X s2 b1 b2

128 9.366 110.425 3.287 18.483
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Table 6: Maximum likelihood estimates, likelihood, AIC and BIC values for the remission data.
Parameters GE(SD) SGE(SD)

λ̂ 0.121(0.014) 0.231(0.053)
α̂ 1.218(0.149) 1.511(0.240)
q̂ - 2.416(0.751)

Loglikelihood -413.078 -410.010
AIC 830.155 826.019
BIC 835.859 834.575
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Figure 1: Plot of the Slashed Generalized Exponential density,SGE(λ, α, q).
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Figure 2: Plots of the generalized exponential’s asymmetry and kurtosis.
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Figure 3: Plots of the slashed generalized exponential’s asymmetry and kurtosis.
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Figure 4: Left panel: models fitted by the maximum likelihood approach for active repair time data
set: SGE (solid line) and GE(dashed line). Right panel: Plots of the tails for both models
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Figure 5: Left panel: QQ-plot for model GE. Right panel: QQ-plot for model SGE
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Figure 6: Left panel: models fitted by maximum likelihood method for remission times: SGE
(solid line) and GE(dashed line). Right panel: part of right tails for both model.
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Figure 7: Left Panel: QQ-plot for the GE model. Right panel: QQ-plot for model SGE
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