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Gamma-Maxwell distribution
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Héctor W. Ǵomez§

Abstract

A new two-parameter distribution, the gamma-Maxwell distribution, is proposed and stud-

ied. We generate the new distribution using the gamma-G generator of distributions proposed

by Zografos and Balakrishnan (2009). The proposal distribution can be seen as an extension

of the Maxwell distribution with more flexibility in terms of the distribution asymmetry and

kurtosis. We study some probability properties, discuss maximum likelihood estimation and

present a real data application indicating that the new distribution can improve the ordinary

Maxwell distribution in fitting real data.
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1 Introduction

A random variable X follows a Maxwell distribution with scale parameterθ, denotedX ∼ M(θ), if

its probability density function (pdf) and cumulative distribution function (cdf) are given by

g(x; θ) =
4
√
π
θ3/2x2e−θx

2
, (1)

and

G(x; θ) =
2
√
π
γ

(
3
2
, θx2

)

, (2)

respectively, wherex > 0 andγ(a, x) =
∫ x

0
ua−1e−u du is the incomplete gamma function. Tyagi

and Bhattacharya (1989a, 1989b) obtained the minimum variance unbiased estimator, Bayes esti-

mator and the reliability function of this distribution. Chaturvedi and Rani (1998) generalized the

Maxwell distribution and obtained classical and Bayesian estimators for this distribution. Bekker

and Roux (2005) studied empirical Bayes estimation for Maxwell distribution. Shakil et al. (2008)

studied the distributions of the product|XY| and ratio|X/Y|, when X and Y are independent ran-

dom variables having the Maxwell and Rayleigh distributions. Kazmi et al. (2012) obtained the

Bayesian estimation for two component mixture of Maxwell distribution assuming type I censored

data.

Zografos and Balakrishnan (2009) proposed families of univariate distribution generated by gamma

random variables. For any baseline cdfG(x), x ∈ R, they defined the gamma-G generator (with an

extra shape parameterα > 0) by the pdf and cdf given by

f (x) =
g(x)
Γ(α)

{
− log[1−G(x)]

}α−1 , (3)

and

F(x) =
γ(α,− log[1−G(x)])

Γ(α)
=

1
Γ(α)

∫ − log[1−G(x)]

0
uα−1e−u du, (4)

respectively, whereg(x) = dG(x)/dx, Γ(α) =
∫ ∞

0
uα−1e−u du is the gamma function andγ(∙) is the

incomplete gamma function.
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In this article, we introduce a new univariate distribution using the gamma-G generator of distri-

butions. Specifically, we replace (1) and (2) into (3) to obtain the pdf of the new distribution. The

respective cdf is obtained replacing (2) into (4).

The article is organized as follows. In Section 2 we present its density, moments and asymmetry

and kurtosis coefficients. In Section 3 we discuss moment and maximum likelihood estimations.

In addition, we calculate the elements of the observed information matrix and conduct a simulation

study to illustrate the behavior of the maximum likelihood estimates. Section 4 present two appli-

cation to real data sets. The applications illustrates the good performance of the model proposed

in real applications. Final conclusions are reported in Section 5.

2 Gamma-Maxwell distribution

In this section, we present the pdf and cdf of the new distribution. In addition, we derive an

analytical expression for distributional moments and use this result to compute the asymmetry and

kurtosis coefficients.

Definition 2.1 A random variable X follows a Gamma-Maxwell (GM) distribution, denoted as

X ∼ GM(θ, α), if its probability density function (pdf) and cumulative distribution function (cdf)

are given by

f (x; θ, α) =
4θ3/2
√
πΓ(α)

x2e−θx
2

{

− log

[

1−
2
√
π
γ

(
3
2
, θx2

)]}α−1

, (5)

and

F(x;α, θ) =
γ
(
α,− log

(
1− 2√

π
γ
(

3
2, θx

2
)))

Γ(α)
, (6)

respectively, where x> 0, θ > 0 is a scale parameter,α > 0 is a shape parameter,Γ(∙) is the

gamma function andγ(∙) is the incomplete gamma function.

If α = 1 the gamma-Maxwell distribution is reduced to the Maxwell distribution. Figure 1 de-

picts some of the shapes that the gamma-Maxwell distribution can take for different values of its

parameters.
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Next, we present some transformations related to GM distributions.

Proposition 2.1 Let X∼ GM(θ, α). Then,

a) W= aX ∼ GM(θ/a2, α) for all a > 0;

b) The pdf of W= X−1 is

fW(w; θ, α) =
4θ3/2
√
πΓ(α)

w−4e−
θ

w2

{

− log

[

1−
2
√
π
γ

(
3
2
,
θ

w2

)]}α−1

, w > 0;

c) The pdf of W= log(X) is given by

fW(w; θ, α) =
4θ3/2
√
πΓ(α)

e2w−θe2w

{

− log

[

1−
2
√
π
γ

(
3
2
, θe2w

)]}

, w ∈ R.

Proof. Partsa)-c) are directly obtained from the change-of-variable method2.

Remark 1 Part a) of Proposition 2.1 indicates that the GM distributions belong to the scale family,

Part b) demonstrates that these distributions are not closed under reciprocation, while the result in

Part c) can be used to study regression models in same lines as in the context of regression models

for positive random variables; see McDonald and Butler(1990). In addition, Part a) allows us to

obtain a one parameter GM distribution. That is, if X∼ GM(θ, α), then
√
θX ∼ GM(1, α).

2.1 Moment and related measures

Proposition 2.2 Let X∼ GM(θ, α). Then, for r= 1,2, ... it follows that r-th moment is given by

μr = E(Xr) =
θr/2

Γ(α)
ar , (7)

where ar is defined as

ar =

∫ 1

0

(

H−1

(

u;
3
2
,1

)) r
2 {
− log(1− u)

}α−1 du, (8)

where H−1 is the quantile function of the gamma distribution.
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Proof. The cdf of the Maxwell distribution that is shown in Equation (2), can be written as

G(x, α) =
2
√
π
γ

(
3
2
, θx2

)

= H

(

θx2;
3
2
,1

)

,

whereH(x; a,b) =
∫ x

0
ba

Γ(a)u
a−1e−bx du is the cdf of the gamma distribution.

Using the defining moments, the r-th moment is given by

μr =
4θ3/2
√
πΓ(α)

∫ ∞

0
xr+2e−θx

2

{

− log

[

1− H

(

θx2;
3
2
,1

)]}α−1

dx.

Now, by lettingu = H
(
θx2, 3

2,1
)

and consideringar as the integral, the result is obteined2.

Corollary 2.1 If X ∼ GM(θ, α), then

E(X) =
a1
√
θΓ(α)

and Var(X) =
Γ(α)a2 − a2

1

θΓ2(α)
.

Corollary 2.2 If X ∼ GM(θ, α), then the coefficients of asymmetry (
√
β1) and kurtosis (β2) are,

respectively,

√
β1 =

Γ2(α)a3 − 3Γ(α)a1a2 + 3a3
1

[
Γ(α)a2 − 2a2

1

]3/2
,

and

β2 =
Γ3(α)a4 − 4Γ2(α)a1a3 + 6Γ(α)a2

1a2 − 3a4
1

[
Γ(α)a2 − a2

1

]2
.

Remark 2 If α = 1 the asymmetry and kurtosis coefficients take the values 13.791 and 3.108,

respectively, which correspond to those for the classical Maxwell distribution. Figures 2 and 3

depict plots for the asymmetry and kurtosis coefficients, respectively, of the Maxwell distribution

and gamma-Maxwell distribution.
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3 Inference

In this section we discuss moment and maximum likelihood estimations for the parametersθ and

α of the Gamma-Maxwell distribution. In addition, we present the observed information matrix

for the gamma-Maxwell distribution and conduct a simulation study to illustrate the behavior of

maximum likelihood estimates.

3.1 Moment estimators

Proposition 3.1 Let X1, . . . ,Xn a random sample for the random variable X∼ GM(θ, α). Then,

moment estimators forθ = (θ, α) are givenby

X2a2
1 − X

2
Γ(α̂M)a2 = 0 and θ̂M =

a2
1

X
2
Γ2(α̂M)

,

where X is the sample meanand X2 is the sample mean for square of the sample units.

Proof. Using (7), it follows that

E(X) =
a1
√
θΓ(α)

and E(X2) =
a2

θΓ(α)
,

and replacingE(X) by X andE(X2) by X2, we obtain a system of equations for which the solution

leads to the moment estimators (θ̂M, α̂M) for (θ, α) 2.

The solution for the moment estimators can be obtained by using numerical procedures. For

instance, to solve the right equation we can use the “uniroot” function built in R.

3.2 Maximum Likelihood estimation

For a random sampleX1, . . . ,Xn from the distributionGM(θ, α), the log likelihood function can be

written as

l(θ, α) = n log

(
4
√
π

)

+
3n
2

log(θ) − n log(Γ(α)) + 2
n∑

i=1

log(xi) − θ
n∑

i=1

x2
i (9)
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+(α − 1)
n∑

i=1

log

{

− log

[

1−
2
√
π
γ

(
3
2
, θx2

)]}

,

so that the maximum likelihood equations are given by

3n
2θ
−

n∑

i=1

x2
i + 2

√
θ

π
(α − 1)

n∑

i=1

x3
i e
−θx2

i

{
log

[
1− 2√

π
γ
(

3
2, θx

2
i

)]} [
1− 2√

π
γ
(

3
2, θx

2
i

)] = 0, (10)

−nΨ(α) +
n∑

i=1

log

{

− log

[

1−
2
√
π
γ

(
3
2
, θx2

i

)]}

= 0, (11)

whereΨ is the digamma function. The maximum likelihood estimators forθ andα can be obtained

solving the non-linear equations in (10-11). Those solutions can be obtained by using the function

optim available in software R Development Core Team (2014), the specific method is the L-BFGS-

B developed by Byrd et al. (1995) which allows box constraint. This uses a limited-memory

modification of the quasi-Newton method.

Alternatively, based on the results in Ristic and Balakrishnan (2012), the MLE forθ andα can be

obtained in the following way. First, we solve the equation(11) forα, obtaining

α = Ψ−1



1
n

n∑

i=1

log
(
− logA(θ)

)

 , (12)

whereΨ−1 is the inverse digamma function andA(θ) = 1 − 2√
π
γ
(

3
2, θx

2
i

)
. Replacing (12) in (10),

we obtain

3n
2θ
−

n∑

i=1

x2
i + 2

√
θ

π


Ψ
−1



1
n

n∑

i=1

log
(
− logA(θ)

)

 − 1




n∑

i=1

x3
i e
−θx3

i

A(θ) logA(θ)
= 0.

Solving this non-linear equation forθ we obtain the MLÊθ. Finally, replacinĝθ in (12), we obtain

the MLE α̂.

3.3 Observed information matrix

For a random sampleX1, . . . ,Xn from the distributionGM(θ, α), so that the observed information

matrix is given by
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In(θ, α) =




∂2l(θ, α)
∂θ2

∂2l(θ, α)
∂α∂θ

∂2l(θ, α)
∂θ∂α

∂2l(θ, α)
∂α2




,

such that

∂2l(θ, α)
∂θ2

= −
3n

2θ2
+

(α − 1)
√
πθ

n∑

i=1

(1+ 2θx2
i )x3

i e−θx
2
i

{
log

[
1− 2√

π
γ
(

3
2, θx

2
i

)]} [
1− 2√

π
γ
(

3
2, θx

2
i

)]

+
4θ
π

(α − 1)
n∑

i=1

x6
i e−θx

2
i

{
1+ log

[
1− 2√

π
γ
(

3
2, θx

2
i

)]}

{
log2

[
1− 2√

π
γ
(

3
2, θx

2
i

)]} [
1− 2√

π
γ
(

3
2, θx

2
i

)]2
,

∂2l(θ, α)
∂α∂θ

= 2

√
θ

π

n∑

i=1

x3
i e−θx

2
i

{
log

[
1− 2√

π
γ
(

3
2, θx

2
i

)]} [
1− 2√

π
γ
(

3
2, θx

2
i

)] ,

∂2l(θ, α)
∂θ∂α

= 2

√
θ

π

n∑

i=1

x3
i e−θx

2
i

{
log

[
1− 2√

π
γ
(

3
2, θx

2
i

)]} [
1− 2√

π
γ
(

3
2, θx

2
i

)] ,

∂2l(θ, α)
∂α2

= −nΨ1(α) ,

whereΨ1 is the trigamma function.

3.4 Simulation study

In this subsection, simulation is performed to illustrate the behavior of the MLE estimators and the

moments estimators for parametersθ andα. We generate 1000 random samples of sizesn = 50,

n = 100 andn = 200 from the distributionGM(θ, α) for fixed values of the parameters. Random

numbersX ∼ GM(θ, α) can be generated as

X =

(
1
θ

H−1

(

1− e−H−1(u;α,1);
3
2
,1

))1/2

,

whereH−1 is the quantile function of the gamma distribution. Measures and empirical standard

deviations are presented in Table 1. Here, the parameters are well estimated and there is clear
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indication that the estimates are asymptotically unbiased. Moreover, MLEs are more efficient than

moment estimators, as expected. We used the moments estimators as the starting values to obtain

the MLE.

4 Application

In this section we analyze two data sets using the Maxwell and gamma-Maxwell distributions. In

addition, we analyze the data sets using the Weibull (W) and Gamma (G) distributions. These

distributions are usually used for analyzing this type of data sets. The first data set corresponds to

wind speed data, reported by Ahmad et al. (2009) , and the second data set correspond to energy

consumption data, previously studied by Devore (2005).

4.1 Wind speed data

Ahmad et al. (2009) analyze the variations in wind speed on the east coast of peninsular Malaysia

in order to create optimal conditions for designing wind turbines and wind farms. In the study they

report 41323 observations associated to wind speed. Table (2) presents summary statistics for the

wind speed data whereb1 andb2 are the coefficients of asymmetry and kurtosis, respectively.

Using results in Section 3.1, moment estimators were computed, leading toθ̂ = 0.096 and̂α =

0.447. These estimates were then used as starting values for the optim algorithm for maximizing

the likelihood function. Table 3 presents parameter estimates for the M, G, W and GM models,

using maximum likelihood (MLE) approach and the corresponding Akaike information criterion

AIC (Akaike, 1974) and Bayesian information criterion BIC (Schwarz, 1978) for model choice.

For these data, AIC and BIC shows a better fit of the GM model. Standard deviations (SD) were

computed using the inverse of the Hessian matrix. Figure 4 depicts the histogram for the data with

the fitted densities, revealing good performance of the GM model.
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4.2 Energy consumption data

Devore (2005) present a set data associated to energy consumption (in BTU) of 90 homes with

gas heating. The electric companies consider essential analyze this type information for respond

to energy demands. Table (4) presents summary statistics for the energy consumption data where

b1 andb2 are the coefficients of asymmetry and kurtosis, respectively.

Using results in Section 3.1, moment estimators were computed, leading toθ̂ = 0.028 and̂α =

2.300. These estimates were then used as starting values for the optim algorithm for maximizing

the likelihood function. Table 5 presents parameter estimates for the M, G, W and GM models,

using maximum likelihood (MLE) approach and the corresponding Akaike information criterion

AIC (Akaike, 1974) and Bayesian information criterion BIC (Schwarz, 1978) for model choice.

For these data, AIC and BIC shows a better fit of the GM model. Standard deviations (SD) were

computed using the inverse of the Hessian matrix. Figure 5 depicts the histogram for the data with

the fitted densities, revealing good performance of the GM model.

5 Concluding remark

In this paper we study an extension of the Maxwell distribution more flexibility in terms of the

asymmetry and kurtosis of distribution. This model is generated using the gamma-G generator of

distributions. Moment and maximum likelihood estimators for the gamma-Maxwell distribution

requires numerical procedures (such as the Newton-Raphson algorithm) to be computed. Appli-

cations to real data have demonstrated that the gamma-Maxwell distribution can present better fit

than Maxwell distribution.
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Table 1: Maximum likelihood and Moment estimators for samples generated for several values of

the parametersθ andα.
Maximum LikelihoodEstimators

Parameters n = 50 n = 100 n = 200

θ α θ (SD) α (SD) θ (SD) α (SD) θ (SD) α (SD)

1.0 0.5 1.0930 (0.2499) 0.5325(0.0977) 1.0398 (0.1666) 0.5160(0.0671) 1.0167 (0.1192) 0.5065(0.0467)

1.5 1.0668 (0.2207) 1.6000(0.3439) 1.0296 (0.1409) 1.5480(0.2164) 1.0212 (0.1068) 1.5290(0.1633)

2.5 1.0680 (0.2259) 2.6846(0.6113) 1.0306 (0.1521) 2.5917(0.3974) 1.0230 (0.1015) 2.5535(0.2744)

2.0 2.0 2.1430 (0.4621) 2.1534(0.4861) 2.0374 (0.3015) 2.0439(0.3136) 2.0265 (0.2038) 2.0288(0.2120)

3.0 2.1517 (0.4789) 3.2388(0.7782) 2.0630 (0.3000) 3.1086(0.4879) 2.0247 (0.2087) 3.0458(0.3330)

4.0 2.1353 (0.4446) 4.2827(0.9540) 2.0838 (0.3072) 4.1817(0.6683) 2.0383 (0.2170) 4.0828(0.4617)

3.0 2.0 3.2043 (0.6496) 2.1504(0.4703) 3.1015 (0.4301) 2.0734(0.2990) 3.0467 (0.2989) 2.0301(0.2095)

3.0 3.2135 (0.6856) 3.2238(0.7344) 3.0708 (0.4443) 3.0799(0.4831) 3.0376 (0.3047) 3.0432(0.3343)

4.0 3.2122 (0.7050) 4.2947(0.9950) 3.0952 (0.4625) 4.1325(0.6525) 3.0413 (0.3069) 4.0611(0.4383)

MomentsEstimators

1.0 0.5 1.0102 (0.2666) 0.4986(0.1024) 0.9947 (0.1784) 0.4973(0.0728) 0.9948 (0.1278) 0.4970(0.0521)

1.5 1.0703 (0.2287) 1.6066(0.3605) 1.0305 (0.1469) 1.5496(0.2262) 1.0236 (0.1099) 1.5330(0.1688)

2.5 1.1094 (0.6151) 2.6884(1.6136) 1.2535 (3.9586) 2.7594(0.9654) 1.114 (0.4051) 2.7371(0.7549)

2.0 2.0 2.3666 (0.9839) 2.3517(0.9526) 2.1557 (0.5953) 2.1607(0.5830) 2.0781 (0.2812) 2.0851(0.3025)

3.0 1.8887 (0.6740) 2.7809(0.9983) 1.9658 (0.6237) 2.8860(0.7444) 2.0310 (0.5701) 3.0611(0.6822)

4.0 1.9370 (0.8780) 3.7745(2.0812) 2.0621 (0.8622) 3.8707(0.8108) 1.9540 (0.6196) 3.9063(0.8024)

3.0 2.0 3.4461 (1.1054) 2.3961(1.0311) 3.2651 (0.7879) 2.2113(0.6735) 3.1141 (0.3993) 2.0790(0.2895)

3.0 2.8718 (1.0959) 2.8570(1.1286) 3.1219 (1.0516) 3.0388(1.0692) 3.1327 (0.8678) 3.1439(0.8875)

4.0 2.8133 (0.7490) 3.7607(1.1259) 2.8594 (0.7067) 3.7988(0.9197) 2.8846 (0.6917) 3.8438(0.8850)
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Table 2: Summary statistics for wind speed data set.

n X s2 b1 b2

41323 2.355 2.231 0.705 3.259
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Table 3: Estimated Parameters of the M, G, W and GM distributions for wind speed data set.

Model Parameter estimates (SD) AIC BIC
M θ̂ = 0.448 (0.003) 163700.9 163709.6
G θ̂ = 0.851 (0.006) 143795.6 143812.9

α̂ = 2.005 (0.012)
W θ̂ = 2.619 (0.008) 142394.7 142411.9

α̂ = 1.582 (0.006)
GM θ̂ = 0.096 (0.001) 141992.1 142009.4

α̂ = 0.448 (0.003)
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Table 4: Summary statistics for energy consumption data set.

n X s2 b1 b2

90 10.038 8.225 0.283 3.000
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Table 5: Estimated Parameters of the M and GM distributions for energy consumption data set.

Model Parameter estimates (SD) AIC BIC

M θ̂ = 0.013 (0.001) 467.900 470.400

G θ̂ = 1.153 (0.173) 448.837 453.836

α̂ = 11.579 (1.701)

W θ̂ = 11.093 (0.325) 449.443 454.442

α̂ = 3.792 (0.300)

GM θ̂ = 0.027 (0.004) 447.158 452.157

α̂ = 2.271 (0.355)
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Figure 1: Plot of the Gamma-Maxwell density,GM(θ, α).
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Figure 2: Asymmetry coefficient.
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Figure 3: Kurtosis coefficient
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Figure 4: Models fitted by maximum likelihood method for wind speed data set.
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Figure 5: Models fitted by maximum likelihood method for energy consumption data set.
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