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We study the stability of the cosmological scalar field models by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern
(KCC) theory. In this approach, we describe the time evolution of the scalar field cosmologies in geometric terms, by performing
a “second geometrization” and considering them as paths of a semispray. By introducing a nonlinear connection and a Berwald-
type connection associated with the Friedmann and Klein-Gordon equations, five geometrical invariants can be constructed, with
the second invariant giving the Jacobi stability of the cosmological model. We obtain all the relevant geometric quantities, and we
formulate the condition for Jacobi stability in scalar field cosmologies. We consider the Jacobi stability properties of the scalar fields
with exponential andHiggs type potential.TheUniverse dominated by a scalar field exponential potential is in Jacobi unstable state,
while the cosmological evolution in the presence of Higgs fields has alternating stable and unstable phases. We also investigate the
stability of the phantom quintessence and tachyonic scalar field models, by lifting the first-order system to the tangent bundle. It
turns out that in the presence of a power law potential both of these models are Jacobi unstable during the entire cosmological
evolution.

1. Introduction

A large number of cosmological observations, obtained
initially from distant Type Ia Supernovae, have convincingly
proven that the Universe has undergone a late-time acceler-
ated expansion [1–4]. In order to explain these observations,
a deep change in our paradigmatic understanding of the cos-
mological dynamics is necessary, and many ideas have been
put forward to address them. The “standard” explanation of
the late-time acceleration is based on the assumption of the
existence of a mysterious component, called dark energy,
which is responsible for the observed characteristics of the
late-time evolution of the Universe.

On the other hand, the combination of the results of the
observations of high redshift supernovae and of the WMAP
and of the recently released Planck data indicates that the
location of the first acoustic peak in the power spectrum of
the Cosmic Microwave Background Radiation is consistent
with the prediction of the inflationary model for the density
parameter Ω, according to which Ω = 1. The cosmological
observations also provide strong evidence for the behavior
of the parameter 𝑤 = 𝑝/𝜌 of the equation of state of the
cosmological fluid, where 𝑝 is the pressure and 𝜌 is the
density, as lying in the range −1 ≤ 𝑤 = 𝑝/𝜌 < −1/3 [5].

In order to explain the observed cosmological dynamics,
it is assumed usually that the Universe is dominated by two
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main components: cold (pressureless) dark matter (CDM)
and dark energy (DE) with negative pressure, respectively.
CDMcontributesΩ𝑚 ∼ 0.3 [6], and its introduction ismainly
motivated by the necessity of theoretically explaining the
galactic rotation curves and the large scale structure forma-
tion. On the other hand, DE represents the major component
of the Universe, providing ΩDE ∼ 0.7. Dark energy is the
major factor determining the recent acceleration of the
Universe, as observed from the study of the distant Type Ia
Supernovae [5]. Explaining the nature and properties of dark
energy has become one of the most active fields of research
in cosmology and theoretical physics, with a huge number of
proposed DE models (for reviews, see, e.g., [7–11]).

One interesting possibility for explaining DE is cosmo-
logical models containing a mixture of cold dark matter
and quintessence, representing a slowly varying, spatially
inhomogeneous component [12]. From a theoretical as well
as a particle physics point of view, the idea of quintessence
can be implemented by assuming that it is the energy
associated with a scalar field 𝑄, having a self-interaction
potential 𝑉(𝑄). When the potential energy density 𝑉(𝑄)
of the quintessence field is greater than the kinetic one,
it follows that the pressure 𝑝 = �̇�2/2 − 𝑉(𝑄) associated
with the quintessence 𝑄-field is negative. The properties of
the quintessential cosmological models have been actively
considered in the physical literature (for a recent review, see
[13]). As opposed to the cosmological constant of standard
general relativity, the equation of state of the quintessence
field changes dynamically with time [14]. Alternative models,
in which the late-time acceleration can be driven by the
kinetic energy of the scalar field, called 𝑘-essence models,
have also been proposed [15–19].

Scalar fields 𝜙 that are minimally coupled to gravity via a
negative kinetic energy can also explain the recent accelera-
tion of the Universe. Interestingly enough, they allow values
of the parameter of the equation of state with 𝑤 < −1. These
types of scalar fields, known as phantomfields, have been pro-
posed in [20]. For phantom scalar fields, the energy density
and pressure are given by𝜌𝜙 = −�̇�2/2+𝑉(𝜙) and𝑝𝜙 = −�̇�2/2−𝑉(𝜙), respectively. The interesting properties of phantom
cosmological models for dark energy have been investigated
in detail in [21–28]. Recent cosmological observations show
that at some moment during the cosmological evolution the
value of the parameter 𝑤 may have crossed the standard
value 𝑤 = −1, corresponding to the general relativistic
cosmological constantΛ.This cosmological situation is called
the phantom divide line crossing [28]. In the case of scalar field
models with cusped potentials, the crossing of the phantom
divide line was investigated in [27]. Another alternative way
of explaining the phantom divide line crossing is to model
dark energy by a scalar field, which is nonminimally coupled
to gravity [27].

Scalar fields are also assumed to play a fundamental
role in the evolution of the very early Universe, playing a
major role in the inflationary scenario [29, 30]. Originally,
the idea of inflation was proposed to provide solutions to the
singularity, flat space, horizon, and homogeneity problems,
to the absence of magnetic monopoles, and to the problem

of large numbers of particles [31, 32]. However, presently
it is believed that the most important feature of inflation
is the generation of both initial density perturbations and
the background cosmological gravitational waves. These
important cosmological parameters can be determined in
many different ways, like, for example, through the study
of the anisotropies of the microwave background radiation,
the analysis of the local (peculiar) velocity galactic flows,
of the clustering of galaxies, and the determination of the
abundance of gravitationally bound structures of different
types, respectively [32].

In many inflationary models, the dynamical evolution of
the early Universe is driven by a single scalar field, called
the inflaton, with the inflaton rolling in some underlying
self-interaction potential [29–32]. One common approxi-
mation in the study of the inflationary evolution is the
slow-roll approximation, which can be successfully used in
two separate contexts. The first situation is in the study
of the classical inflationary dynamics of expansion in the
lowest order approximation. Hence, this implies that the
contribution of the kinetic energy of the inflaton field to the
expansion rate is ignored.The second situation is represented
by the calculation of the perturbation spectra. The standard
expressions deduced for these spectra are valid in the lowest
order in the slow-roll approximation [33]. Finding exact
inflationary solutions of the gravitational field equations
for different types of scalar field potentials is also of great
importance for the understanding of the dynamics of the
early Universe. Such exact solutions have been found for
a large number of inflationary potentials. Moreover, the
potentials allowing a graceful exit from inflation have been
classified [34].

Hence, the theoretical investigation of the scalar field
models is an essential task in cosmology. Among the various
methods used to study the properties of scalar fields, the
methods based on the applications of the mathematical
formalism of the qualitative study of dynamical systems are
of considerable importance.

Theusefulness of dynamical systems formulation of phys-
icalmodels ismainly determined by their powerful predictive
power. This predictive power is essentially determined by
the stability of their solutions. In a realistic physical system,
due to the limited precision of the measurements, some
uncertainties in the initial conditions always exist. Therefore,
a physically meaningful mathematical model must also offer
detailed and useful information on the evolution of the devia-
tions of the possible trajectories of the dynamical system from
a given reference trajectory. Hence, an important require-
ment in mathematical modelling is the understanding of the
local stability of the physical and cosmological processes.
This information on the system behavior is as important
as the understanding of the late-time deviations. The global
stability of the solutions of the dynamical systems described
by systems of nonlinear ordinary differential equations is
analyzed in the framework of the well-known mathematical
theory of Lyapunov stability. In this mathematical approach,
the fundamental quantities that measure exponential devi-
ations from a given trajectory are the so-called Lyapunov
exponents [35, 36]. It is usually very difficult to determine
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the Lyapunov exponents analytically for a given dynamical
system, and thus one must resort to numerical methods. On
the other hand, the important problem of the local stability
of the solutions of dynamical systems, described by ordinary
differential equations, is less understood.

Cosmological models have been intensively investigated
by using methods from dynamical systems and Lyapunov
stability theory [37–53]. In particular, phase space analysis
proved to be a very useful method for the understanding
of the cosmological evolution. When studying the evolution
of cosmological models, the dynamical equations can be
represented by an autonomous dynamical system, described
by a set of coupled (usually strongly nonlinear) differential
equations for the physical parameters. This representation
allows the study of the Lyapunov stability of the model,
without explicitly solving the field equations for the basic
variables. Furthermore, the importance of the Lyapunov
analysis is related to the fact that stationary points of
the dynamical system correspond to exact or approximate
analytic solutions of the field equations. Thus, the dynamical
system formulation provides a useful tool for obtaining
exact or approximate solutions of the field equations in
cosmologically interesting situations.

Even though the mathematical methods of the Lyapunov
stability analysis are well established, the study of the stability
of the dynamical systems from different points of view
is extremely important. The comparison of the results of
the alternative approach with the corresponding Lyapunov
exponents analysis can provide a deeper understanding of
the stability properties of the system. An alternative and
very powerful method for the study of the systems of the
ordinary differential equations is represented by the so-called
Kosambi-Cartan-Chern (KCC) theory, whichwas initiated in
the pioneering works of Kosambi [54], Cartan and Kosambi
[55], and Chern [56], respectively. The KCC theory was
inspired and influenced by the geometry of the Finsler
spaces (for a recent review of the KCC theory, see [57]).
From a mathematical point of view, the KCC theory is a
differential geometric theory of the variational equations for
the deviations of the whole trajectory with respect to the
nearby ones [58]. In the KCC geometrical description of the
systems of ordinary differential equations, one associates a
nonlinear connection and a Berwald-type connection with
the system of equations. With the use of these geometric
quantities, five geometrical invariants are obtained.Themost
important invariant is the second invariant, also called the
curvature deviation tensor, which gives the Jacobi stability of
the system [57–60].The KCC theory has been applied for the
study of different physical, biochemical, or technical systems
(see [59–77]).

An alternative geometrization method for dynamical
systems, with applications in classical mechanics and general
relativity, was proposed in [78, 79] and further investigated
in [80–84]. The Henon-Heiles system and Bianchi type
IX cosmological models were also investigated within this
framework. In particular, in [80] a theoretical approach
based on the geometrical description of dynamical systems
and of their chaotic properties was developed. For the base
manifold, a Finsler space was introduced, whose properties

allow the description of a wide class of physical systems,
including those with potentials depending on time and
velocities, for which the Riemannian approach is unsuitable.

It is the purpose of the present paper to consider a
systematic investigation of the Jacobi stability properties
of the flat homogeneous and isotropic general relativis-
tic cosmological models. By starting from the standard
Friedmann equations, we perform, as a first step in our
analysis, a “second geometrization” of these equations, by
associating with them a nonlinear connection and a Berwald
connection, respectively.This procedure allows obtaining the
so-called KCC invariants of the Friedmann equations. The
second invariant, called the curvature deviation tensor, gives
the Jacobi stability properties of the cosmological model.
The KCC theory can be naturally applied to systems of
second-order ordinary differential equations.The Friedmann
equations can be formulated as second-order differential
equations, similarly to the Klein-Gordon equation describing
the scalar field. Therefore, the KCC theory can be applied to
matter and scalar field dominated cosmological models. We
obtain the general condition for the Jacobi stability of scalar
fields, which is described by two inequalities involving the
second and the first derivatives of the scalar field potential,
the energy density of the field, and the time derivative of the
field itself. The geodesic deviation equations describing the
time variation of the deviation vector are also obtained. As
an application of the developed formalism, we investigate the
stability properties of the scalar field cosmological models
with exponential and Higgs type potentials, respectively. It
turns out that the exponential potential scalar field is Jacobi
unstable during its entire evolution, while the time evolution
of the scalar field cosmological models with Higgs potential
shows complicated dynamics with alternating stable and
unstable Jacobi phases. The Jacobi stability properties of the
Higgs type models are determined by the numerical value of
the ratio of the self-coupling constant and the square of the
mass of the Higgs particle.

The Lyapunov stability properties of the scalar field cos-
mological models are usually investigated by reformulating
the evolution equation as a set of three first-order ordinary
differential equations. In order to apply the KCC theory to
such systems, they must be lifted to the tangent bundle.
From mathematical point of view, this requires taking the
time derivative of the first-order equations, so that their
“second geometrization” can be easily performed. We con-
sider in detail the Jacobi stability properties of the phantom
quintessence and tachyon scalar field cosmological models.
We study in detail the Jacobi stability condition of these
models, and we find that they are Jacobi unstable during the
entire expansionary cosmological evolution.

The present paper is organized as follows. We review
the basic ideas and the mathematical formalism of the KCC
theory in Section 2. The Jacobi stability analysis of the
homogenous isotropic flat cosmological models by using
the second-order formulation of the dynamics is performed
in Section 3. We consider both cases of the matter dom-
inated and scalar field dominated cosmological models.
As an application of the developed formalism, we investi-
gate in detail the Jacobi stability of the scalar fields with
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exponential potential and Higgs potential, respectively. The
Jacobi stability of the first-order dynamical system formu-
lation of scalar field cosmological models is considered in
Section 4, in which the KCC geometrization of the phantom
quintessence and tachyonic scalar field models is analyzed
in detail. We discuss and conclude our results in Section 5.
The KCC geometric quantities giving the geometric descrip-
tion of the phantom quintessence and tachyon scalar field
cosmologies are presented in Appendix A and Appendix B,
respectively.

2. Kosambi-Cartan-Chern (KCC) Theory
and Jacobi Stability

In the present section, we briefly summarize the basic
concepts and results of the KCC theory (for a detailed presen-
tation, see [57, 58]).

2.1. Dynamical Systems as Paths of a Semispray. In the follow-
ing, we denote byM a real, smooth 𝑛-dimensional manifold
and by 𝑇M its tangent bundle. On an open connected subsetΩ of the Euclidian (2𝑛 + 1) dimensional space 𝑅𝑛 × 𝑅𝑛 × 𝑅1,
we introduce a 2𝑛 + 1-dimensional coordinates system(𝑥𝑖, 𝑦𝑖, 𝑡), 𝑖 = 1, 2, . . . , 𝑛, where (𝑥𝑖) = (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦𝑖) =(𝑦1, 𝑦2, . . . , 𝑦𝑛), and 𝑡 is the time 𝑡. The coordinates 𝑦𝑖 are
defined as

𝑦𝑖 = ( 𝑑𝑥1𝑑𝑡 , 𝑑𝑥2𝑑𝑡 , . . . , 𝑑𝑥𝑛𝑑𝑡 ) . (1)

We assume that the time 𝑡 is an absolute invariant, and
therefore the only admissible change of coordinates will be�̃� = 𝑡,�̃�𝑖 = �̃�𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝑖 ∈ {1, 2, . . . , 𝑛} . (2)

Definition 1 (see [85]). A deterministic dynamical system is
a formal set of rules that describe the evolution of points in
some set 𝑆 with respect to an external, discrete, or continuous
time parameter 𝑡 running in another set 𝑇.

In a rigorous mathematical formulation, a dynamical
system is a map [85]:𝜙 : 𝑇 × 𝑆 󳨀→ 𝑆, (𝑡, 𝑥) 󳨃󳨀→ 𝜙 (𝑡, 𝑥) , (3)

which satisfies the condition 𝜙(𝑡, ⋅) ∘ 𝜙(𝑠, ⋅) = 𝜙(𝑡 + 𝑠, ⋅) for all
times 𝑡, 𝑠 ∈ 𝑇. In order to model realistic dynamical systems
or physical processes additional structures must be added to
the above definition.

In many cases, the equations of motion of a dynamical
system can be derived from Lagrangian 𝐿 via the Euler-
Lagrange equations:𝑑𝑑𝑡 𝜕𝐿𝜕𝑦𝑖 − 𝜕𝐿𝜕𝑥𝑖 = 𝐹𝑖, 𝑖 = 1, 2, . . . , 𝑛, (4)

where 𝐹𝑖, 𝑖 = 1, 2, . . . , 𝑛, is the external force. For regular
Lagrangian 𝐿, the Euler-Lagrange equations given by (4) are

equivalent to a system of second-order differential equations
[86]: 𝑑2𝑥𝑖𝑑𝑡2 + 2𝐺𝑖 (𝑥𝑗, 𝑦𝑗) = 0, 𝑖 ∈ {1, 2, . . . , 𝑛} , (5)

where each function 𝐺𝑖(𝑥𝑗, 𝑦𝑗, 𝑡) is 𝐶∞ in a neighborhood of
some initial conditions ((𝑥)0, (𝑦)0, 𝑡0) in Ω.

A vector field 𝑆 on 𝑇M of the form

𝑆 = 𝑦𝑖 𝜕𝜕𝑥𝑖 − 2𝐺𝑖 (𝑥𝑖, 𝑦𝑖) 𝜕𝜕𝑦𝑖 (6)

is called a semispray [87–89]. The functions 𝐺𝑖(𝑥𝑖, 𝑦𝑖) are the
local coefficients of the semispray, and they are defined on
domains of local charts. In the particular case in which the
coefficients 𝐺𝑖 = 𝐺𝑖(𝑥𝑖, 𝑦𝑖) are homogeneous of degree two in𝑦𝑖, the vector field 𝑆 is called a spray.

Definition 2. A path of the semispray 𝑆 is defined as a curve 𝑐 :𝑡 → 𝑥𝑖(𝑡) onM, with the property that its lift 𝑐󸀠 : 𝑡 → (𝑥𝑖(𝑡),�̇�𝑖(𝑡)) to𝑇M is an integral curve of 𝑆, that is, a curve satisfying
the equation 𝑑2𝑥𝑖𝑑𝑡2 + 2𝐺 (𝑥𝑖, 𝑦𝑖) = 0. (7)

Conversely, for any system of ordinary differential equa-
tions of form (7), which is globally defined, the functions 𝐺𝑖
define a semispray on 𝑇M [88, 89].

More generally, one can start from an arbitrary system
of second-order differential equations of form (5), where no a
priori given Lagrangian function is assumed, and study the
behavior of its trajectories by analogy with the trajectories of
the Euler-Lagrange equations.

2.2. The KCC Geometrization of Dynamical Systems. To
associate a geometrical structure with the dynamical system
defined by (5), we introduce first a nonlinear connection 𝑁
on 𝑀, with coefficients 𝑁𝑖𝑗, defined as [86]

𝑁𝑖𝑗 = 𝜕𝐺𝑖𝜕𝑦𝑗 . (8)

Thenonlinear connection can be understood in terms of a
dynamical covariant derivative ∇𝑁 [85]: for two vector fields
V, 𝑤 defined over 𝑀, we introduce the covariant derivative∇𝑁 as

∇𝑁V 𝑤 = [V𝑗 𝜕𝜕𝑥𝑗𝑤𝑖 + 𝑁𝑖𝑗 (𝑥, 𝑦) 𝑤𝑗] 𝜕𝜕𝑥𝑖 . (9)

For 𝑁𝑖𝑗(𝑥, 𝑦) = Γ𝑖𝑗𝑙(𝑥)𝑦𝑙, (9) reduces to the definition
of the covariant derivative for the special case of a linear
connection.

For nonsingular coordinate transformations given by (2),
the KCC-covariant differential of an arbitrary vector field𝜃𝑖(𝑥) on the open subsetΩ ⊆ 𝑅𝑛×𝑅𝑛×𝑅1 is defined as [57, 59]𝐷𝜃𝑖𝑑𝑡 = 𝑑𝜃𝑖𝑑𝑡 + 𝑁𝑖𝑗𝜃𝑗. (10)
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For 𝜃𝑖 = 𝑦𝑖, we obtain𝐷𝑦𝑖𝑑𝑡 = 𝑁𝑖𝑗𝑦𝑗 − 2𝐺𝑖 = −𝜖𝑖, (11)

where the contravariant vector field 𝜖𝑖 on Ω is called the first
KCC invariant.

2.2.1. The Curvature Deviation Tensor. Let us now vary the
trajectories 𝑥𝑖(𝑡) of system (5) into nearby ones according to�̃�𝑖 (𝑡) = 𝑥𝑖 (𝑡) + 𝜂𝜉𝑖 (𝑡) , (12)

where |𝜂| is a small parameter and 𝜉𝑖(𝑡) are the components of
some contravariant vector field defined along the path 𝑥𝑖(𝑡).
Substituting (12) into (5) and taking the limit 𝜂 → 0, we
obtain the variational equations [58–61]𝑑2𝜉𝑖𝑑𝑡2 + 2𝑁𝑖𝑗 𝑑𝜉𝑗𝑑𝑡 + 2 𝜕𝐺𝑖𝜕𝑥𝑗 𝜉𝑗 = 0. (13)

By using the KCC-covariant differential, we can write (13)
in the covariant form: 𝐷2𝜉𝑖𝑑𝑡2 = 𝑃𝑖𝑗𝜉𝑗, (14)

where we have denoted

𝑃𝑖𝑗 = −2 𝜕𝐺𝑖𝜕𝑥𝑗 − 2𝐺𝑙𝐺𝑖𝑗𝑙 + 𝑦𝑙 𝜕𝑁𝑖𝑗𝜕𝑥𝑙 + 𝑁𝑖𝑙𝑁𝑙𝑗, (15)

and we have introduced the Berwald connection 𝐺𝑖𝑗𝑙, defined
as [57–61, 86]

𝐺𝑖𝑗𝑙 ≡ 𝜕𝑁𝑖𝑗𝜕𝑦𝑙 . (16)

The tensor 𝑃𝑖𝑗 is called the second KCC invariant, or
the deviation curvature tensor, and (14) is called the Jacobi
equation, respectively. In either Riemann or Finsler geometry,
when system (5) describes the geodesic equations in the given
geometry, (14) represents the Jacobi field equation.

The trace 𝑃 of the curvature deviation tensor is obtained
as

𝑃 = 𝑃𝑖𝑖 = −2 𝜕𝐺𝑖𝜕𝑥𝑖 − 2𝐺𝑙𝐺𝑖𝑖𝑙 + 𝑦𝑙 𝜕𝑁𝑖𝑖𝜕𝑥𝑙 + 𝑁𝑖𝑙𝑁𝑙𝑖 + 𝜕𝑁𝑖𝑖𝜕𝑡 . (17)

The third, fourth, and fifth invariants of system (5) are
defined as [58]

𝑃𝑖𝑗𝑘 ≡ 13 ( 𝜕𝑃𝑖𝑗𝜕𝑦𝑘 − 𝜕𝑃𝑖𝑘𝜕𝑦𝑗) ,
𝑃𝑖𝑗𝑘𝑙 ≡ 𝜕𝑃𝑖𝑗𝑘𝜕𝑦𝑙 ,

𝐷𝑖𝑗𝑘𝑙 ≡ 𝜕𝐺𝑖𝑗𝑘𝜕𝑦𝑙 .
(18)

The third invariant 𝑃𝑖𝑗𝑘 can be interpreted as a torsion
tensor. The fourth and fifth invariants 𝑃𝑖𝑗𝑘𝑙 and 𝐷𝑖𝑗𝑘𝑙 are called
the Riemann-Christoffel curvature tensor and the Douglas
tensor, respectively [57, 58]. In Berwald spaces, these tensors
always exist. Generally, they can be used to describe the
geometrical properties of systems of second-order differential
equations.

2.3. The Definition of Jacobi Stability. In many physical
applications, the behavior of the trajectories of the dynamical
system (5) in a vicinity of a point 𝑥𝑖(𝑡0) is of major interest. In
the following, for simplicity, we take 𝑡0 = 0. The trajectories𝑥𝑖 = 𝑥𝑖(𝑡) can be considered as curves in the Euclidean space(𝑅𝑛, ⟨⋅, ⋅⟩), where ⟨⋅, ⋅⟩ defines the canonical inner product of𝑅𝑛. As for the deviation vector 𝜉, we assume that it satisfies
the natural initial conditions 𝜉(0) = 𝑂 and �̇�(0) = 𝑊 ̸= 𝑂,
where 𝑂 ∈ 𝑅𝑛 is the null vector [57–60].

We describe the focusing tendency of the trajectories
around 𝑡0 = 0 as follows: if ‖𝜉(𝑡)‖ < 𝑡2, 𝑡 ≈ 0+, the trajectories
are bunching together. On the other hand, if ‖𝜉(𝑡)‖ > 𝑡2,𝑡 ≈ 0+, the trajectories are dispersing [57–60]. Alternatively,
the focusing tendency of the trajectories can be described
in terms of the deviation curvature tensor: the trajectories
of the system of second-order differential equations (5) are
bunching together for 𝑡 ≈ 0+ if and only if the real parts of the
eigenvalues of the deviation curvature tensor𝑃𝑖𝑗(0) are strictly
negative. On the other hand, the trajectories are dispersing if
and only if the real parts of the eigenvalues of the tensor 𝑃𝑖𝑗(0)
are strictly positive [57–60].

Based on the above intuitive considerations, we can define
the Jacobi stability for a second-order system of differential
equations as follows [57–60].

Definition 3. If the system of second-order differential equa-
tions (5) satisfies the initial conditions󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡0) − �̃�𝑖 (𝑡0)󵄩󵄩󵄩󵄩󵄩 = 0,󵄩󵄩󵄩󵄩󵄩�̇�𝑖 (𝑡0) − �̃�𝑖 (𝑡0)󵄩󵄩󵄩󵄩󵄩 ̸= 0, (19)

with respect to the norm ‖ ⋅ ‖ induced by a positive definite
inner product, then we call the trajectories of (5) Jacobi stable
if and only if the real parts of the eigenvalues of the deviation
tensor 𝑃𝑖𝑗 are strictly negative everywhere. Otherwise, the
trajectories are called Jacobi unstable.

The focusing/dispersing behavior of the trajectories of a
system of second-order ordinary differential equations near
the origin is represented in Figure 1.

2.4. The Deviation Curvature Tensor for Two- and Three-
Dimensional Dynamical Systems. In the important two-
dimensional case, the curvature deviation tensor can be
written in a matrix form as

𝑃𝑖𝑗 = (𝑃11 𝑃12𝑃21 𝑃22) , (20)
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‖(t)‖2 < t2, t ≈ 0+ ‖(t)‖2 > t2, t ≈ 0+

xi(t) xi(t)

Figure 1: Behavior of the trajectories near zero.

with the eigenvalues given by

𝜆± = 12 [𝑃11 + 𝑃22 ± √(𝑃11 − 𝑃22 )2 + 4𝑃12𝑃21 ] . (21)

The eigenvalues of the curvature deviation tensor can be
obtained as solutions of the quadratic equation:𝜆2 − (𝑃11 + 𝑃22 ) 𝜆 + (𝑃11𝑃22 − 𝑃12𝑃21 ) = 0. (22)

A very powerful algebraic method to obtain the signs of
the eigenvalues of the curvature deviation tensor is repre-
sented by the Routh-Hurwitz criteria [90]. According to these
criteria, all of the roots of the polynomial 𝑃(𝜆) are negatives
or have negative real parts if the determinants of all Hurwitz
matrices det𝐻𝑗, 𝑗 = 1, 2, . . . , 𝑛, are strictly positive. For 𝑛 = 2,
corresponding to the case of (22), the Routh-Hurwitz criteria
take the simple form 𝑃11 + 𝑃22 < 0,𝑃11𝑃22 − 𝑃12𝑃21 > 0. (23)

The curvature properties along a given geodesic are
described by the eigenvalues of the deviation curvature
tensor 𝜆±, which are invariant functions on the tangent
space. Moreover, once they are known, we can introduce two
quantities that can characterize the way the geodesic explores
the base manifold. They are defined as the (half) of the Ricci
curvature scalar along the flow, 𝜅, and the anisotropy 𝜃, given
by

𝜅 = 12 (𝜆+ + 𝜆−) = 𝑃2 = 𝑃11 + 𝑃222 ,
𝜃 = 12 (𝜆+ − 𝜆−) = √(𝑃11 − 𝑃22 )2 + 4𝑃12𝑃212 , (24)

respectively.
In the case of a three-dimensional dynamical systemwith𝑛 = 3, the characteristic equation of the matrix of the

curvature deviation tensor becomes𝜆3 − (𝑃11 + 𝑃22 + 𝑃33 ) 𝜆2 − [−𝑃11 (𝑃22 + 𝑃33 ) + 𝑃12𝑃21+ 𝑃13𝑃31 − 𝑃22𝑃33 + 𝑃23𝑃32 ] 𝜆 − [𝑃11 (𝑃22𝑃33 − 𝑃23𝑃32 )− 𝑃12 (𝑃21𝑃33 − 𝑃23𝑃31 ) + 𝑃13 (𝑃21𝑃32 − 𝑃22𝑃31 )] = 0.
(25)

Therefore, the conditions of the Jacobi stability for a three-
dimensional system of second-order ordinary differential
equations can be formulated as follows:Σ = 𝑃11 + 𝑃22 + 𝑃33 < 0,Φ = −𝑃11 (𝑃22 + 𝑃33 ) + 𝑃12𝑃21 + 𝑃13𝑃31 − 𝑃22𝑃33 + 𝑃23𝑃32< 0,Ψ = 𝑃11 (𝑃22𝑃33 − 𝑃23𝑃32 ) − 𝑃12 (𝑃21𝑃33 − 𝑃23𝑃31 )+ 𝑃13 (𝑃21𝑃32 − 𝑃22𝑃31 ) < 0,

Ω = (𝑃11 + 𝑃22 + 𝑃33 ) [−𝑃11 (𝑃22 + 𝑃33 ) + 𝑃12𝑃21 + 𝑃13𝑃31− 𝑃22𝑃33 + 𝑃23𝑃32 ] − [𝑃11 (𝑃22𝑃33 − 𝑃23𝑃32 )− 𝑃12 (𝑃21𝑃33 − 𝑃23𝑃31 ) + 𝑃13 (𝑃21𝑃32 − 𝑃22𝑃31 )] > 0.

(26)

3. Jacobi Stability Analysis of Isotropic Matter
Dominated and Scalar Field Cosmologies

In the present section, we use the KCC approach for the
study of the dynamical properties of the matter dominated
and scalar field cosmologies. We explicitly obtain the non-
linear and Berwald connections and the deviation curvature
tensors. The eigenvalues of the deviation curvature tensor
are also obtained, and we study their properties in the
equilibrium points of the matter dominated model. The
study of the sign of the eigenvalues allows us to obtain the
Jacobi stability properties of the fixed points of the matter
field dominated cosmological models. Next, we proceed to
a detailed analysis of the scalar field cosmologies in the
framework of the KCC theory. A full “second geometric”
description is introduced, and the time evolution of the
relevant physical and geometrical parameters is obtained. In
particular, the nature of the Jacobi stability is analyzed in
detail. In the present study, we restrict our analysis to the case
of the flat Friedmann-Robertson-Walker metric, given by𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡) (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) , (27)

where 𝑎 is the scale factor.

3.1. Jacobi Stability ofMatter Dominated CosmologicalModels.
For aUniverse filledwith pressureless dust and radiation only,
the cosmological expansion is described mathematically by
the Friedmann equations, which take the well-known form3𝐻2 = 𝜌𝑚 + 𝜌𝑟 + Λ,

�̇� = − 12 (𝜌𝑚 + 43 𝜌𝑟) ,
�̇�𝑚 + 3𝐻𝜌𝑚 = 0,�̇�𝑟 + 4𝐻𝜌𝑟 = 0,

(28)

where a dot denotes the derivative with respect to the time𝑡. In (28), 𝐻 = �̇�/𝑎 denotes the Hubble function, 𝜌𝑚 is
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the baryonic matter energy density, 𝜌𝑟 is the energy density
of the radiation, and Λ is the cosmological constant.

3.1.1. Friedmann Equations as an Autonomous Dynamical
System. In order to reformulate the cosmological evolutions
equations as a dynamical system, we need to introduce first
the density parameters (Ω𝑚, Ω𝑟, ΩΛ) of the matter, radiation
and cosmological constant, defined as

Ω𝑚 = 𝜌𝑚3𝐻2 ,Ω𝑟 = 𝜌𝑟3𝐻2 ,ΩΛ = Λ3𝐻2 .
(29)

The density parameters satisfy the normalization relationΩ𝑚 + Ω𝑟 + ΩΛ = 1. (30)

As the basic variables (𝑥, 𝑦) in the phase space we adopt the
quantities 𝑥 ≡ Ω𝑟 and 𝑦 ≡ ΩΛ, respectively [52]. Then, the
density parameter of the matter is given by Ω𝑚 = 1 − 𝑥 −𝑦, and the range of the variables (𝑥, 𝑦, Ω𝑚) is 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1, and 0 ≤ Ω𝑚 ≤ 1. To describe the cosmological
dynamics, we define the physically significant phase space asΦ = {(𝑥, 𝑦) : 𝑥 + 𝑦 ≤ 1, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1}. Next, we
take the time derivatives of 𝑥 and 𝑦 with respect to the time𝑡, and, after introducing the new time variable 𝜏 = ln 𝑎(𝑡),
we can formulate the Friedmann equations as an autonomous
dynamical system given by [52]𝑑𝑥𝑑𝜏 = −𝑥 (1 − 𝑥 + 3𝑦) , (31)

𝑑𝑦𝑑𝜏 = (3 + 𝑥 − 3𝑦) 𝑦. (32)

The critical points of system (31) and (32) in the phase space
region defined by Ψ are obtained by solving the algebraic
equations 𝑥(1−𝑥+3𝑦) = 0 and (3+𝑥−3𝑦)𝑦 = 0, respectively,
and are given by 𝑃dS = {𝑥 = 0, 𝑦 = 1} ,𝑃𝑟 = {𝑥 = 1, 𝑦 = 0} ,𝑃𝑚 = {𝑥 = 0, 𝑦 = 0} . (33)

The Lyapunov stability properties of the system follow
from the study of the Jacobian matrix:

𝐽 = (−1 + 2𝑥 − 3𝑦 −3𝑥𝑦 3 + 𝑥 − 6𝑦) . (34)

The critical points of system (31) and (32) have a clear
cosmological interpretation. Thus, the critical point 𝑃dS =(0, 1), with ΩΛ = 1, has 𝑎(𝑡) ∝ exp(√Λ/3𝑡) and is associated
with an accelerated de Sitter type expansion, being a future
attractor [53]. The critical point 𝑃𝑟 = (1, 0), with Ω𝑟 = 1 and

𝑎(𝑡) ∝ √𝑡, corresponds to the radiation-dominated era in
the cosmological evolution of the Universe and is a source
point or a past attractor. Finally, the critical point 𝑃𝑚(0, 0),
with Ω𝑚 = 1 and 𝑎(𝑡) ∝ 𝑡2/3, corresponds to the decelerating
matter dominated phase of the cosmological expansion. It
turns out that 𝑃𝑚 is a saddle critical point [53].
3.1.2. The KCC Geometrization and the Jacobi Stability of the
Friedmann Equations. In order to apply the KCC theory to
the cosmological dynamical system given by (31) and (32), we
first relabel the variables as𝑥 ≡ 𝑥1 and𝑦 ≡ 𝑥2.We also denote𝑦1 = 𝑑𝑥1/𝑑𝜏 and𝑦2 = 𝑑𝑥2/𝑑𝜏, respectively.Hence, we obtain

𝑑𝑥1𝑑𝜏 = −𝑥1 (1 − 𝑥1 + 3𝑥2) = 𝑓 (𝑥1, 𝑥2) , (35)

𝑑𝑥2𝑑𝜏 = (3 + 𝑥1 − 3𝑥2) 𝑥2 = 𝑔 (𝑥1, 𝑥2) . (36)

Next, we take the derivative with respect to 𝜏 of (35)
and (36), respectively, thus obtaining the following lift on the
tangent bundle of the cosmological dynamical system:

𝑑2𝑥1𝑑𝜏2 = (−1 + 2𝑥1 − 3𝑥2) 𝑦1 − 3𝑥1𝑦2, (37)

𝑑2𝑥2𝑑𝜏2 = 𝑥2𝑦1 + (3 + 𝑥1 − 6𝑥2) 𝑦2. (38)

By comparison with (5), we obtain immediately

𝐺𝑖 (𝑥1, 𝑥2, 𝑦1, 𝑦2)
= − 12 ((−1 + 2𝑥1 − 3𝑥2) 𝑦1 −3𝑥1𝑦2𝑥2𝑦1 (3 + 𝑥1 − 6𝑥2) 𝑦2) . (39)

Hence, the components of the nonlinear connection(𝑁) = 𝑁𝑗𝑖 associatedwith thematter dominated cosmological
dynamical system in the presence of a cosmological constant
are obtained as

(𝑁) = 𝑁𝑗𝑖 = − 12 (−1 + 2𝑥1 − 3𝑥2 −3𝑥1𝑥2 3 + 𝑥1 − 6𝑥2) . (40)

For the components of the deviation tensor 𝑃 = 𝑃𝑗𝑖 , we
obtain

𝑃 = 12 (𝐻𝑓 ⋅ 𝑦 𝐻𝑔 ⋅ 𝑦)𝑡 + 14 𝐽2 (𝑓, 𝑔) , (41)

where

𝐻𝑓 = (𝑓11 𝑓12𝑓21 𝑓22) (42)
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is the Hessian of 𝑓 and 𝐻𝑔 is the Hessian of 𝑔. Explicitly, the
curvature deviation tensor for the Friedmann cosmological
dynamical system can be obtained as

𝑃|(𝑦1=0,𝑦2=0) = ( 14 (−2𝑥1 + 3𝑥2 + 1)2 + 3𝑥1𝑥22 32 𝑥1 (𝑥1 − 6𝑥2 + 3) + 34 𝑥1 (−2𝑥1 + 3𝑥2 + 1)
(𝑥1 − 6𝑥2 + 3) 𝑥2 + 12 (−2𝑥1 + 3𝑥2 + 1) 𝑥2 (𝑥1 − 6𝑥2 + 3)2 + 3𝑥1𝑥22 ) . (43)

Evaluating 𝑃 at the critical points gives

𝑃|(𝑦1=0,𝑦2=0,𝑥1=𝑥1cr ,𝑥2=𝑥2cr) = 14 𝐴2, (44)

where 𝐴 = 𝐽|(𝑦1=0,𝑦2=0,𝑥1=𝑥1cr ,𝑥2=𝑥2cr).
3.1.3. Jacobi Stability of the Critical Points of the Matter
Dominated Cosmological Models. In order to obtain the
Jacobi stability of the critical points of the cosmologicalmodel
described by (31) and (32), we need to compute the numerical
values of the curvature deviation tensor at the critical points.
At the critical point 𝑃dS = (𝑥1 = 0, 𝑥2 = 1), the curvature
deviation tensor takes the form

𝑃|(𝑦1=0,𝑦2=0,𝑥1=0,𝑥2=1) = ( 4 0−1 9) (45)

and has the eigenvalues 𝜆1 = 4 and 𝜆2 = 9. Hence, it
follows that the critical point 𝑃dS of the standard ΛCDM
cosmological model is Jacobi unstable. For the critical point𝑃𝑟 = (𝑥1 = 1, 𝑥2 = 0), we find

𝑃|(𝑦1=0,𝑦2=0,𝑥1=1,𝑥2=0) = ( 14 2140 16 ) , (46)

with the corresponding eigenvalues of the curvature devia-
tion tensor obtained as 𝜆1 = 16 and 𝜆2 = 1/4. Hence, the
critical point 𝑃𝑟 is also Jacobi unstable. Finally, for the last
critical point 𝑃𝑚 = (0, 0), we obtain

𝑃|(𝑦1=0,𝑦2=0,𝑥1=0,𝑥2=0) = ( 14 00 9) , (47)

with the eigenvalues 𝜆1 = 9 and 𝜆2 = 1/4. Hence, we
obtain the result that all the critical points of the dynamical
system equivalent to the cosmological Friedmann equations
are Jacobi unstable.

3.2. The Cosmological Evolution Equations in the Presence of
Minimally Coupled Scalar Fields. Let us consider a rather
general class of scalar field models, minimally coupled to the
gravitational field, for which the Lagrangian density in the
Einstein frame reads

𝐿 = 12𝜅 √󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨 {𝑅 + 𝜅 [𝑔𝜇] (𝜕𝜇𝜙) (𝜕]𝜙) − 2𝑉 (𝜙)]} , (48)

where 𝑅 is the curvature scalar, 𝜙 is the scalar field, 𝑉(𝜙)
is the self-interaction potential, and 𝜅 = 8𝜋𝐺/𝑐4 is the
gravitational coupling constant, respectively. In the following,
we use natural units with 𝑐 = 8𝜋𝐺 = ℏ = 1, and we adopt as
the signature for the metric (+1, −1, −1, −1), as is common in
particle physics.

For a flat FRW scalar field dominated Universe, the
evolution of a cosmological model is determined by the
system of the field equations

3 ( �̇�𝑎 )2 = 𝜌𝜙 = �̇�22 + 𝑉 (𝜙) , (49)

2 �̈�𝑎 + ( �̇�𝑎 )2 = −𝑝𝜙 = − �̇�22 + 𝑉 (𝜙) , (50)

and the evolution equation for the scalar field

�̈� + 3 �̇�𝑎 �̇� + 𝑉󸀠 (𝜙) = 0 (51)

where the overdot denotes the derivative with respect to
the time-coordinate 𝑡 and the prime denotes the derivative
with respect to the scalar field 𝜙, respectively. By substituting�̇�/𝑎 from (49) into (50) and (51), we can reformulate the
dynamics of the scalar field cosmological models in terms of
two second-order nonlinear ordinary differential equations,
given by

�̈� + 13 [�̇�2 − 𝑉 (𝜙)] 𝑎 = 0, (52)

�̈� + √3√ �̇�22 + 𝑉 (𝜙)�̇� + 𝑉󸀠 (𝜙) = 0, (53)

respectively.

3.2.1. The Nonlinear and Berwald Connections and the KCC
Invariants of the Scalar Field Cosmological Models. In the
following, we introduce a new notation for the dependent
variables 𝑎 and 𝜙 and for their time derivatives, respectively,
as 𝑎 = 𝑥1,𝜙 = 𝑥2,�̇� = 𝑦1,�̇� = 𝑦2.

(54)
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The cosmological dynamics of scalar field dominated
Universes can be formulated as a second-order differential
system, given by two second-order differential equations of
the form

𝑑2𝑥𝑖𝑑𝑡2 + 2𝐺𝑖 (𝑥𝑖, 𝑦𝑖) = 0, 𝑖 = 1, 2. (55)

From (52) and (53), it follows immediately that

𝐺1 (𝑎, 𝜙, �̇�, �̇�) = 16 [�̇�2 − 𝑉 (𝜙)] 𝑎, (56)

𝐺2 (𝑎, 𝜙, �̇�, �̇�) = 𝑉󸀠 (𝜙)2 + √32 �̇�√𝑉 (𝜙) + �̇�22 , (57)

respectively. Therefore, we first obtain the components of the
nonlinear connection as

𝑁11 = 𝜕𝐺1 (𝑎, 𝜙, �̇�, �̇�)𝜕�̇� = 0,
𝑁12 = 𝜕𝐺1 (𝑎, 𝜙, �̇�, �̇�)𝜕�̇� = 𝑎�̇�3 ,
𝑁21 = 𝜕𝐺2 (𝑎, 𝜙, �̇�, �̇�)𝜕�̇� = 0,
𝑁22 = 𝜕𝐺2 (𝑎, 𝜙, �̇�, �̇�)𝜕�̇� = √ 32 (𝑉 (𝜙) + �̇�2)√2𝑉 (𝜙) + �̇�2

= √32 2𝜌𝜙 − 𝑉 (𝜙)√𝜌𝜙 .

(58)

For the nonzero components of the Berwald connection,
defined as

𝐺𝑖𝑗𝑙 = 𝜕𝑁𝑖𝑗𝜕𝑦𝑙 , 𝑖, 𝑗, 𝑙 = 1, 2, (59)

we obtain

𝐺122 = 𝜕𝑁12𝜕𝑦2 = 13 𝑎,
𝐺222 = 𝜕𝑁22𝜕𝑦2 = √ 32 �̇� (3𝑉 (𝜙) + �̇�2)

(2𝑉 (𝜙) + �̇�2)3/2 .
(60)

The components of the first KCC invariant of the mini-
mally coupled scalar field model are obtained as

𝜖1 = 2𝐺1 (𝑎, 𝜙, �̇�, �̇�) − 𝑁12 �̇� = − 13 𝑎𝑉 (𝜙) , (61)

𝜖2 = 2𝐺2 (𝑎, 𝜙, �̇�, �̇�) − 𝑁22 �̇�
= 𝑉󸀠 (𝜙) + √ 32 �̇�𝑉 (𝜙)√2𝑉 (𝜙) + �̇�2
= 𝑉󸀠 (𝜙) + √32 �̇�𝑉 (𝜙)√𝜌𝜙 ,

(62)

respectively.
The components of the curvature deviation tensor for

minimally coupled scalar field cosmological models are given
by

𝑃11 = 13 [𝑉 (𝜙) − �̇�2] ,
𝑃12 = �̇��̇�3 − 1√6 𝑎�̇�𝑉 (𝜙)√2𝑉 (𝜙) + �̇�2 ,𝑃21 = 0,
𝑃22 = −𝑉󸀠󸀠 (𝜙) − √6�̇�𝑉󸀠 (𝜙)√2𝑉 (𝜙) + �̇�2 + 9𝑉 (𝜙)22 [2𝑉 (𝜙) + �̇�2]

− 3𝑉 (𝜙)2 .

(63)

For the trace of the curvature deviation tensor, we obtain

𝑃 = 𝑃11 + 𝑃22 = 16 {{{{{−2 [3𝑉󸀠󸀠 (𝜙) + �̇�2]
− 6√6�̇�𝑉󸀠 (𝜙)√2𝑉 (𝜙) + �̇�2 + 27𝑉2 (𝜙)2𝑉 (𝜙) + �̇�2 − 7𝑉 (𝜙)}}}}} ,

(64)

while for 𝜒 = 𝑃11𝑃22 − 𝑃12𝑃21 = 𝑃11𝑃22 we have
𝜒 = 13 [𝑉 (𝜙) − �̇�2] × [[[−𝑉󸀠󸀠 (𝜙) − √6�̇�𝑉󸀠 (𝜙)√2𝑉 (𝜙) + �̇�2

+ 9𝑉2 (𝜙)2 (2𝑉 (𝜙) + �̇�2) − 3𝑉 (𝜙)2 ]]] .
(65)

Therefore, if the conditions 𝑃11 + 𝑃22 < 0 and 𝑃11𝑃22 −𝑃12𝑃21 > 0 are simultaneously satisfied, the scalar field
cosmological model is Jacobi stable. These conditions allow
us to formulate the following.
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Figure 2: Variation of the scale factor of the Universe (a) and of the scalar field (b) as a function of the dimensionless time 𝜏 for the scalar
field with exponential potential, for different values of the parameter 𝜆: 𝜆 = −1 (solid curve), 𝜆 = −√2 (dotted curve), 𝜆 = −√3 (dashed
curve), and 𝜆 = −2 (dashed dotted curve).

Jacobi Stability Condition of Isotropic andHomogeneous Scalar
Field Cosmological Models. If the parameters (𝑉(𝜙), 𝜌𝜙, 𝑝𝜙, �̇�)
of a homogeneous scalar field in an isotropic flat FRW
geometry simultaneously satisfy the conditions

𝑉󸀠󸀠 (𝜙) > 94 𝑉2 (𝜙)𝜌𝜙 − 32 𝜌𝜙 − 12 𝑉 (𝜙) − √3 �̇�𝑉󸀠 (𝜙)√𝜌𝜙 ,
[2𝑝𝜙 + 𝑉 (𝜙)]

× [𝑉󸀠󸀠 (𝜙) + √3�̇�𝑉󸀠 (𝜙)𝜌𝜙 + 3𝑉 (𝜙)2 − 9𝑉2 (𝜙)4𝜌𝜙 ]
> 0,

(66)

the corresponding cosmological model is Jacobi stable, but
Jacobi unstable otherwise.

For the variational differential equations determining the
deviation vector 𝜉, we obtain

3 𝑑2𝜉1𝑑𝑡2 + 2𝑎�̇� 𝑑𝜉2𝑑𝑡 + [�̇�2 − 𝑉 (𝜙)] 𝜉1 (𝑡)
− 𝑎𝑉󸀠2 (𝑡) = 0, (67)

𝑑2𝜉2𝑑𝑡2 + √6 [𝑉 (𝜙) + �̇�2]√2𝑉 (𝜙) + �̇�2 𝑑𝜉2𝑑𝑡
+ [[[𝑉󸀠󸀠 (𝜙) + √3/2�̇�𝑉󸀠 (𝜙)√2𝑉 (𝜙) + �̇�2]]] 𝜉2 (𝑡) = 0,

(68)

respectively.
In the case of the isotropic cosmological scalar field

models, the third, fourth, and fifthKCC invariants, as defined
by (18), are identically equal to zero.

3.2.2. Applications: The Case of the Scalar Field with Exponen-
tial Self-Interaction Potential. As an application of the KCC
geometrization of the scalar field cosmological models, we
will consider the case of a scalar fieldwith an exponential self-
interaction potential of the form

𝑉 (𝜙) = 𝑉0𝑒±𝜆𝜙, (69)

where 𝑉0 and 𝜆 are constants. The cosmological equations
describing the time evolution of this scalar field model are

�̈� + 13 [�̇�2 − 𝑉0𝑒±𝜆𝜙] 𝑎 = 0, (70)

�̈� + √3√ �̇�22 + 𝑉0𝑒±𝜆𝜙�̇� ± 𝜆𝑉0𝑒±𝜆𝜙 = 0, (71)

respectively. By introducing a new time variable 𝜏 = √𝑉0𝑡, it
turns out that the system of (70) and (71) can be written as𝑑2𝑎𝑑𝜏2 + 13 [( 𝑑𝜙𝑑𝜏 )2 − 𝑒±𝜆𝜙] 𝑎 = 0, (72)

𝑑2𝜙𝑑𝜏2 + √3√ 12 ( 𝑑𝜙𝑑𝜏 )2 + 𝑒±𝜆𝜙 𝑑𝜙𝑑𝜏 ± 𝜆𝑒±𝜆𝜙 = 0. (73)

The system of (72)-(73) must be integrated with the initial
conditions 𝑎(0) = 𝑎0, �̇�(0) = 𝑎0𝐻0, 𝜙(0) = 𝜙0, and �̇�(0) = �̇�0,
respectively.

The variations of the scale factor and of the scalar field
with exponential potential are presented, for different values
of the parameter 𝜆, in Figure 2. In order to numerically solve
the field equations, we have used the initial conditions 𝑎(0) =0, 𝜙(0) = 0.001, �̇�(0) = 1, and �̇�(0) = −0.001, respectively.

As one can see from Figure 2, the scale factor is a
monotonically increasing function of time, while the scalar
field also increases during the cosmological evolution. The
time variation of the scalar field potential is presented in
Figure 3.
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Figure 4: Time variations of the KCC invariants 2𝜅 = 𝑃11 + 𝑃22 (a) and 𝜒 = 𝑃11𝑃22 − 𝑃12𝑃12 (b) for a Universe filled with a scalar field with
exponential potential, for different values of the parameter 𝜆: 𝜆 = −1 (solid curve), 𝜆 = −√2 (dotted curve), 𝜆 = −√3 (dashed curve), and𝜆 = −2 (dashed dotted curve).

The scalar field potential is a monotonically decreasing
function of time, which tends, in the large time limit, to zero.
The time variations of the KCC invariants 2𝜅 = 𝑃11 + 𝑃22 and𝜒 = 𝑃11𝑃22 − 𝑃12𝑃12 are represented in Figure 4.

In order for the considered model of the Universe to
be stable, the invariants must simultaneously satisfy the
conditions 2𝜅 < 0 and 𝜒 > 0, respectively. As one can see
from the figures, from the chosen set of parameters, these
conditions are not satisfied for any interval of time during the
cosmological evolution. Therefore, it follows that during its
entire evolution an exponential potential scalar fieldUniverse
is in a Jacobi unstable state. Finally, in Figure 5 we present the
time variation of the components of the deviation vector 𝜉𝑖,𝑖 = 1, 2.

The component 𝜉1 of the deviation vector increases expo-
nentially in time, indicating that the trajectories do diverge
exponentially near the origin. Thus, this result also confirms
the presence of the Jacobi instability for the exponential
potential scalar field cosmology.

3.2.3. Scalar Fields with Higgs Potential. As a next case of the
investigation of the Jacobi stability of a cosmological scalar

field model, we consider that the Universe is filled with a
Higgs-like field, with self-interaction potential given by

𝑉 (𝜙) = 𝑉0 + 12 𝑀2𝜙2 + 𝜆4 𝜙4, (74)

where 𝑉0 is a constant and 𝑀2 < 0 is related to the mass
of the Higgs boson by the relation 𝑚𝐻 = 𝑉󸀠󸀠2, where 𝑉2 =−𝑀2/𝜆 gives the minimum of the potential. The Higgs self-
coupling constant 𝜆 ≈ 1/8 [91], a value inferred based on
the determination of 𝑚𝐻 from accelerator experiments. By
introducing a new dimensionless time variable 𝜏 = 𝑀𝑡,
the basic equations determining the cosmological evolution
are given by𝑑2𝑎𝑑𝜏2 + 13 [ 12 ( 𝑑𝜙𝑑𝜏 )2 − V0 + 12 𝜙2 − 𝜂𝜙4] = 0, (75)

𝑑2𝜙𝑑𝜏2 + √3√ 12 ( 𝑑𝜙𝑑𝜏 )2 + V0 − 12 𝜙2 + 𝜂𝜙4 𝑑𝜙𝑑𝜏 − 𝜙
+ 4𝜂𝜙3 = 0, (76)
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Figure 5: Time variations of the deviation vector components 𝜉1 (a) and 𝜉2 (b) for a Universe filled with a scalar field with exponential
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Figure 6: Variation of the scale factor of the Universe (a) and of the scalar field (b) as a function of the dimensionless time 𝜏 for the scalar
field with Higgs type self-interaction potential, for different values of the parameter 𝜂: 𝜂 = 10 (solid curve), 𝜂 = 20 (dotted curve), 𝜂 = 30
(dashed curve), and 𝜂 = 40 (dashed dotted curve).

where V0 = 𝑉0/𝑀2 and 𝜂 = 𝜆/4𝑀2 > 0, respectively. The
time variations of the scale factor of the Higgs field filled
Universe and of the scalar field are represented in Figure 6.
To numerically integrate the gravitational field equations, we
have fixed the value of the constant V0 to V0 = 0.005, and
we have adopted as initial conditions the values of the initial
conditions 𝑎(0) = 𝑎0, �̇�(0) = 𝑎0𝐻0, 𝜙(0) = 𝜙0, and �̇�(0) = �̇�0,
respectively.

The Universe filled with a Higgs type scalar field is
expanding, with the scale factor monotonically increasing in
time. In the initial phases of the expansion, the scale factor
can be approximated by a linearly increasing function of time.
The Higgs scalar field 𝜙 keeps a constant value in the initial
stages of the evolution, followed by a rapid increase associated
with an oscillatory behavior with a decreasing amplitude,
associated with the energy dissipation. The variation of the
Higgs potential is represented in Figure 7.
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Figure 7: Variation of the Higgs type potential of the scalar field
as a function of the dimensionless time 𝜏 for different values of the
parameter 𝜂: 𝜂 = 10 (solid curve), 𝜂 = 20 (dotted curve), 𝜂 = 30
(dashed curve), and 𝜂 = 40 (dashed dotted curve).
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After an initial phase in which the potential is constant,
rapid oscillations with decreasing amplitude do follow, and
the potential decays in time. The variation of the KCC
invariants 2𝜅 and 𝜒 is represented in Figure 8.

Jacobi stability of the cosmological model with Higgs
type scalar field requires the conditions 2𝜅 < 0 and 𝜒 >0 to be simultaneously satisfied. The Jacobi stable/unstable
regions formed during the cosmological expansion of scalar
field cosmologies with Higgs self-interacting potential are
presented in Figure 9.

In Figure 10, we present the time variation of the compo-
nents of the deviation vector 𝜉𝑖, 𝑖 = 1, 2.
4. Jacobi Stability Analysis of the

Phantom Quintessence and
Tachyonic Cosmological Models

In the present section, we will consider the Jacobi stability
analysis of the standard dynamical system formulation of
scalar field cosmological models. In this formulation, the
Friedmann equations are rewritten in the equivalent form of
a three-dimensional first-order dynamical system. Geometri-
cally, we can describe the solutions of a first-order dynamical
system as a flow 𝜑𝑡 : 𝐷 ⊂ 𝑅𝑛 → 𝑅𝑛, or, more generally,𝜑𝑡 : 𝐷 ⊂ M → M, where M is a smooth 𝑛-dimensional
manifold. The canonical lift of 𝜑𝑡 to the tangent space 𝑇M
is given by �̂�𝑡 : 𝑇M → 𝑇M, �̂�𝑡(𝑢) = (𝜑𝑡(𝑢), �̇�𝑡(𝑢)),
where �̇�𝑡(𝑢) = 𝜕𝜑(𝑡, 𝑢)/𝜕𝑡. Therefore, in order to apply
the KCC theory to first-order dynamical systems, we must
first lift the equations to the tangent bundle. Mathematically,
this is equivalent to simply taking the time derivative of the
dynamical system.

4.1. First-Order Dynamical System Formulation of Quintes-
sence and Phantom Quintessence Scalar Field Cosmological
Models. In the following, we assume that the energy density
and pressure of the scalar field can be generally represented
as

𝜌𝜙 = 𝜁 12 �̇�2 + 𝑉 (𝜙) ,
𝑝𝜙 = 𝜁 12 �̇�2 − 𝑉 (𝜙) , (77)

where 𝜁 = ±1. The case 𝜁 = +1 corresponds to the quintes-
sence fields, while 𝜁 = −1 describes the phantom scalar fields.
We assume that the Universe is filled with ordinary matter
with energy density 𝜌𝑚 and pressure 𝑝𝑚 and scalar fields.
All models are characterized by their dimensionless density
parameters Ω𝑚 and Ω𝜙, defined as

Ω𝑚 = 𝜌𝑚3𝐻2 ,Ω𝜙 = 𝜌𝜙3𝐻2 , (78)

and satisfying the constraint Ω𝑚 + Ω𝜙 = 1. The cosmological
equations describing this Universe model take the form3𝐻2 = 𝜌𝑚 + 𝜌𝜙,2�̇� = − (𝜌𝑚 + 𝑝𝑚 + 𝜌𝜙 + 𝑝𝜙) , (79)

�̈� + 3𝐻�̇� + 𝜁𝑉󸀠 (𝜙) = 0, (80)

respectively. In the following, we assume that the matter
obeys a linear barotropic equation of state of the form 𝑝𝑚 =(𝛾𝑚 − 1)𝜌𝑚, where 𝛾𝑚 is constant and 1 ≤ 𝛾𝑚 ≤ 2. From
the second Friedmann equation, we immediately obtain the
relation

− 2�̇�𝐻2 = 3𝛾𝑚Ω𝑚 + 𝜁 �̇�2𝐻2 . (81)

As basic variables in the first-order dynamical description of
cosmological dynamics, we introduce the quantities 𝑥 and 𝑦,
defined as

𝑥 = �̇�√6𝐻 ,
𝑦 = √𝑉√3𝐻 . (82)

In these variables, the density parameter of the scalar field
is given by Ω𝜙 = 𝑥2 + 𝑦2, while the density parameter of
the matter can be written as Ω𝑚 = 1 − (𝑥2 + 𝑦2). Moreover,
the energy density and pressure of the scalar field are 𝑝𝜙 =3𝐻2(𝜁𝑥2 + 𝑦2) and 𝑝𝜙 = 3𝐻2(𝜁𝑥2 − 𝑦2), respectively. Instead
of the ordinary time variable 𝑡, we introduce the new
independent variable 𝜏, defined as 𝜏 = ln 𝑎(𝑡), giving 𝑑/𝑑𝑡 =𝐻(𝑑/𝑑𝜏). Then, by taking the time derivative of 𝑥 and 𝑦, we
obtain after some simple transformations [53]𝑑𝑥𝑑𝜏 = −3𝑥 (1 − 𝜁𝑥2) + 3𝛾𝑚2 𝑥 (1 − 𝑥2 − 𝑦2)

− √ 32 𝜁 𝑉󸀠𝑉 𝑦2,
𝑑𝑦𝑑𝜏 = [ 3𝛾𝑚2 (1 − 𝑥2 − 𝑦2) + 3𝜁𝑥2] 𝑦 + √ 32 𝑉󸀠𝑉 𝑥𝑦.

(83)

The above system is not a closed system since onemore equa-
tion involving 𝑉󸀠/𝑉 is still lacking. Therefore, we introduce a
third variable 𝑧, defined as 𝑧 = 𝑉󸀠/𝑉. By taking its derivative
with respect to the time 𝜏, we obtain𝑑𝑧𝑑𝜏 = √6𝑥𝑧2 [Γ (𝑧) − 1] , (84)

where Γ = 𝑉𝑉󸀠󸀠/𝑉󸀠2. In order to lift this dynamical system to
the tangent bundle, we relabel the coordinates as𝑥 = 𝑥1,𝑦 = 𝑥2,𝑧 = 𝑥3,
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Figure 8: Time variations of the KCC invariants 2𝜅 = 𝑃11 + 𝑃22 (a) and 𝜒 = 𝑃11𝑃22 − 𝑃12𝑃12 (b) for a Universe filled with a Higgs type scalar field,
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Figure 9: The Jacobi stability regions for the scalar field cosmological model with Higgs potential for different values of 𝜂: 𝜂 = 10 (a), 𝜂 = 20
(b), 𝜂 = 30 (c), and 𝜂 = 40 (d). The blue area shows the time intervals with 𝜒 > 0, and the black area shows the time intervals with 𝜅 < 0.
Where they overlap, both conditions 𝜒 > 0 and 𝜅 < 0 are simultaneously satisfied, and the evolution is Jacobi stable.

𝑦1 = 𝑑𝑥1𝑑𝜏 ,
𝑦2 = 𝑑𝑥2𝑑𝜏 ,
𝑦3 = 𝑑𝑥3𝑑𝜏 .

(85)

Then, by taking the derivatives with respect to 𝜏 of the
first-order cosmological dynamical system, we obtain the
equivalent second-order system:

𝑑2𝑥1𝑑𝜏2 = − 32 {𝑥󸀠 (−𝛾𝑚 + 3 (𝛾𝑚 − 2𝜁) 𝑥2 + 𝛾𝑚𝑦2 + 2)
− 𝑦 (6𝛾𝑚𝑥𝑦󸀠 + √6𝜁 (2𝑧𝑦󸀠 + 𝑦𝑧󸀠))} = −2𝐺1,
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Figure 10: Time variations of the deviation vector components 𝜉1 (a) and 𝜉2 (b) for a Universe filled with a Higgs type scalar field, for different
values of the parameter 𝜂: 𝜂 = 10 (solid curve), 𝜂 = 20 (dotted curve), 𝜂 = 30 (dashed curve), and 𝜂 = 40 (dashed dotted curve).

𝑑2𝑥2𝑑𝜏2 = 12 [√6𝑥2𝑥3 − 6 (𝛾𝑚 − 2𝜁) 𝑥1𝑥2] 𝑦1 + 12 [3𝛾𝑚− 3 (𝛾𝑚 − 2𝜁) (𝑥1)2 + √6𝑥1𝑥3 − 9𝛾𝑚 (𝑥2)2] 𝑦2
+ √ 32 𝑥1𝑥2𝑦3 = −2𝐺2,𝑑2𝑥3𝑑𝜏2 = √6 (𝑥3)2 [Γ (𝑥3) − 1] 𝑦1+ √6𝑥3 {𝑥1𝑥3Γ󸀠 (𝑥3) + 2𝑥1 [Γ (𝑥3) − 1]} 𝑦3= −2𝐺3.

(86)
The KCC geometric quantities (nonlinear connection, devi-
ation curvature tensor, and geodesic deviation equations)
describing the Jacobi stability properties of the phan-
tom quintessence cosmological model are presented in
Appendix A.

4.2. The Phantom Scalar Field with Power Law Potential. We
assume that the potential of the phantom quintessence scalar
field is given by a power law function, so that 𝑉(𝜙) = 𝑉0𝜙𝛼,
where 𝛼 is a constant. Then, it follows immediately that 𝑧 =𝑉󸀠/𝑉 = 𝛼/𝜙, Γ = (𝛼 − 1)/𝛼 = constant, and Γ󸀠(𝑧) = 0.
An important cosmological indicator is represented by the
parameter of the total equation of state of thematter𝑤, which
for dust is defined as𝑤 = 𝑝𝜙𝜌𝜙 + 𝜌𝑚 = 𝜁𝑥2 − 𝑦2(𝜁 − 1) 𝑥2 + 1 . (87)

The variations of the density parameter of the phantom
quintessence field Ω𝜙 and of the parameter of the total
equation of state are represented as a function of the dust
(𝛾𝑚 = 1) cosmological matter density parameter in Figure 11.
The initial conditions used to integrate the cosmological
dynamical system are 𝑥(0) = 0.28, 𝑦(0) = 0.47, and 𝑧(0) =0.1, respectively.

In this model, the Universe starts its evolution in the large
time limit from a matter dominated phase, with Ω𝑚 = 1.

During the cosmological expansion the role of the scalar field
becomes dominant, and the Universe reaches the present day
in a state of accelerated expansion, with Ω𝜙 = 0.75 andΩ𝑚 = 0.25, respectively. On the other hand, the de Sitter
phase with 𝑤 = −1 is reached only for vanishing ordinary
matter density, when the Universe is fully dominated by
the phantom quintessence field. It is also important to note
that the cosmological evolution is basically independent of
the numerical values of the exponent 𝛼 in the scalar field
potential.

The conditions of the Jacobi stability of the phantom
quintessence cosmological model in its three-dimensional
dynamic system representation are given by the four con-
ditions that must be satisfied by the quantities (Σ, Φ, Ψ, Ω),
which are functions of the components of the deviation
curvature tensor andwhich are presented in (26), for different
values of 𝛼.The time variations of (Σ, Φ, Ψ, Ω) are represented
in Figure 12.

As one can see from Figure 12, the Jacobi stability
condition Ω > 0 is not satisfied during the entire time
evolution of this cosmological model. Therefore, phantom
quintessence scalar field cosmologicalmodels with power law
potential are Jacobi unstable for all time intervals.

4.3. Jacobi Stability of Tachyon Field Cosmological Models.
Tachyon scalar fields have been proposed as possible candi-
dates to explain both inflation and the late acceleration of the
Universe [92, 93]. It is also possible for the tachyonic field to
trigger the inflationary expansion and at a later time generate
a nonrelativistic fluid, which could account for the existence
of dark matter. A tachyonic scalar field is described by the

Lagrangian 𝐿 = −𝑉(𝜙)√1 − �̇�2, and it can be described in
terms of effective energy density and pressure, given by

𝜌𝜙 = 𝑉 (𝜙)√1 − �̇�2 ,
𝑝𝜙 = −𝑉 (𝜙) √1 − �̇�2. (88)
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Figure 11: Variation of the density parameter of the phantomquintessence field as a function of the density parameter of the dust cosmological
matter (a) and of the parameter 𝑤 of the total equation of state (b) for different values of 𝛼: 𝛼 = 0.8 (solid curve), 𝛼 = 1 (dotted curve), 𝛼 = 1.2
(dashed curve), and 𝛼 = 1.4 (dashed dotted curve), respectively.
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The Friedmann equations are given by

3𝐻2 = 𝜌𝑚 + 𝑉 (𝜙)√1 − �̇�2 ,
2�̇� + 3𝐻2 = −𝑝𝑚 + 𝑉 (𝜙) √1 − �̇�2,

(89)

while the Klein-Gordon type equation satisfied by the scalar
field is �̈� + 3𝐻�̇� (1 − �̇�2) + 𝑉󸀠 (𝜙)𝑉 (𝜙) (1 − �̇�2) = 0. (90)

The parameter of the equation of state of the tachyon field
is given by 𝑤 = 𝑝𝜙𝜌𝜙 = − (1 − �̇�2) . (91)
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By adopting again for the matter the linear barotropic
equation of state 𝑝𝑚 = (𝛾𝑚 − 1)𝜌𝑚, 1 ≤ 𝛾𝑚 ≤ 2, from the
Friedmann equation we obtain first

2�̇�𝐻2 = −3𝛾𝑚Ω𝑚 − 𝑉 (𝜙)√1 − �̇�2 �̇�2𝐻2 . (92)

To formulate the cosmological evolution equation as a
dynamical system, we introduce a set of variables (𝜏, 𝑥, 𝑦, 𝑧)
defined as

𝜏 = ln 𝑎,
𝑥 = �̇�,
𝑦 = √𝑉√3𝐻 ,
𝑧 = 𝑉󸀠 (𝜙)𝑉3/2 (𝜙) .

(93)

In these variables, the density parameters of the scalar field
and of the matter are given by

Ω𝜙 = 𝑦2√1 − 𝑥2 ,
Ω𝑚 = 1 − 𝑦2√1 − 𝑥2 .

(94)

Then, by taking the derivative of 𝑥 and 𝑦 with respect to𝜏, we obtain
𝑑𝑥𝑑𝜏 = −√3 (1 − 𝑥2) (√3𝑥 + 𝑦𝑧) ,
𝑑𝑦𝑑𝜏

= √32 𝑦 {𝑥𝑦𝑧 + √3 [𝛾𝑚 + 𝑦2√1 − 𝑥2 (𝑥2 − 𝛾𝑚)]} ,
𝑑𝑧𝑑𝜏 = 3√32 𝑥𝑦𝑧2 [Γ (𝑧) − 1] ,

(95)

where Γ(𝑧) = (2/3)𝑉𝑉󸀠󸀠/𝑉󸀠2. By lifting the cosmological field
equations to the tangent bundle, we obtain

𝑑2𝑥𝑑𝜏2 = 2√3𝑥𝑥󸀠 (√3𝑥 + 𝑦𝑧) − √3 (1 − 𝑥2) (√3𝑥󸀠
+ 𝑦󸀠𝑧 + 𝑦𝑧󸀠) = −2𝐺1,

𝑑2𝑦𝑑𝜏2 = √32 {3𝑦 [𝛾𝑚(− 𝑥𝑦2𝑥󸀠(1 − 𝑥2)3/2 − 2𝑦𝑦󸀠√1 − 𝑥2)
+ 2𝑥𝑦2𝑥󸀠2𝑦𝑦󸀠] + 𝑦2𝑧𝑥󸀠 + 3𝑦󸀠
× [𝛾𝑚 (1 − 𝑦2√1 − 𝑥2) + 𝑥2𝑦2] + 2𝑥𝑦𝑧𝑦󸀠2𝑧󸀠}
= −2𝐺2,𝑑2𝑧𝑑𝜏2 = 32 √3𝑧 {(Γ (𝑧) − 1) [𝑦 (𝑧𝑥󸀠 + 2𝑥𝑧󸀠) + 𝑥𝑧𝑦󸀠]
+ 𝑥𝑦𝑧𝑧󸀠Γ󸀠 (𝑧)} = −2𝐺3.

(96)

The KCC geometric quantities (nonlinear connection,
deviation curvature tensor, and geodesic deviation equations)
describing the Jacobi stability properties of the tachyon scalar
field cosmological model are presented in Appendix B.

4.3.1. Power LawPotential Tachyonic Scalar Field Cosmological
Models. In the following, we assume again that the potential
of the tachyonic scalar field is power law type, with 𝑉(𝜙) =𝑉0𝜙𝛼, where 𝑉0 and 𝛼 are constants. This choice immediately
gives Γ = (2/3)(𝛼 − 1)/𝛼. The parametric dependence of the
density parameterΩ𝜙 of the tachyonic scalar field with power
law potential on the matter energy density Ω𝑚 is represented
in Figure 13(a).The parametric variation of thematter density
parameter Ω𝑚 as a function of the parameter of the total
equation of state of matter 𝑤 is shown in Figure 13(b).

In order to numerically integrate the dynamical system
corresponding to the tachyon scalar fieldmodel, we have used
the initial conditions𝑥(0) = 0.28,𝑦(0) = 0.45, and 𝑧(0) = 0.1,
respectively, andwe have assumed that the ordinarymatter in
the Universe is in the form of zero pressure dust, with 𝛾𝑚 = 1.
There is a linear relation between Ω𝜙 and Ω𝑚. The Universe
starts its cosmological evolution in amatter dominated phase,
with Ω𝑚 = 1 and Ω𝜙 = 0, with decelerating expansion.
The energy density of the tachyon field increases in time,
and the Universe enters in a de Sitter phase, with the matter
density becoming negligibly small.The parameter of the total
equation of state satisfies the condition 𝑤 < 0 during the
entire cosmological evolution. It is also interesting to note
that the time evolution of this model is basically independent
of the numerical values of the exponent 𝛼 in the power law
potential. The time variations of (Σ, Φ, Ψ, Ω) describing the
Jacobi stability of the tachyon scalar field cosmological model
are represented in Figure 14.

As one can see from Figure 14, the Jacobi stability con-
dition Ω > 0 is not satisfied during the entire cosmological
evolution period of this scalar field model. Therefore, it
follows that tachyon scalar field cosmological models with
power law potential are Jacobi unstable for all time intervals.
This result is independent of the numerical values of the
exponent 𝛼 in the tachyon scalar field potential.
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5. Discussions and Final Remarks

In the present paper, we have investigated the Jacobi stability
properties of the scalar field cosmological models by using
the KCC theory, which represents a powerful mathematical
method for the analysis of dynamical systems. Scalar field
cosmological models represent a nontrivial testing object for
studying nonlinear effects in the framework of general relativ-
ity. From amathematical point of view, the Jacobi (in)stability

represents a natural generalization of the (in)stability of the
geodesic flow on a differentiable manifold, endowed with a
Riemannian or Finslerian type metric to a nonmetric setting.
The KCC theory can be applied to scalar field cosmolog-
ical models that can be formulated mathematically as sets
of second-order ordinary nonlinear differential equations.
Then, the geometric invariants associated with this system
(nonlinear and Berwald connections) and the deviation
curvature tensor, as well as its eigenvalues, can be explicitly
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obtained. The time evolution of the components of the
deviation vector can also be obtained by explicitly solving the
geodesic deviation equations.

The Jacobi stability, and its theoretical foundation, the
KCC theory, offers an alternative approach to the “classical”
Lyapunov approach, by investigating the deviations of the
entire trajectory of the cosmological evolution equations with
respect to the nearby ones under the effects of a small
perturbation. In the framework of general relativity, we may
call the applications of the KCC theory to the study of the
gravitational fields as a “second geometrization,” in which
already geometric quantities are supplemented by additional
geometric structures. Hence, general relativistic cosmological
models can be described in geometric terms originating from
their dynamical system structure, with these new geometric
structures fully determined by the underlying Riemannian
geometry and the physical properties of the scalar fields (their
self-interaction potential). The stability properties of the per-
turbations of a given trajectory describing the cosmological
evolution are determined by the properties of the curvature
deviation tensor, a geometric quantity constructed from the
connections (nonlinear and Berwald) associated with the
dynamical system describing the cosmological evolution. It is
important to note that the KCC theory can be directly applied
to systems of second-order differential equations, which can
be interpreted geometrically as the paths (or geodesics) asso-
ciated with a semispray. In investigating the Jacobi stability
of cosmological models, we have followed two approaches.
Since the cosmological evolution equations (the Friedmann
equations) are second-order differential equations, the KCC
theory can be naturally and directly applied to study the
stability of the cosmic evolution. As a first step, one obtains
the two nonzero components of the nonlinear connection,
with the 𝑁12 component depending on the product of the
scale factor and of the time derivative of the field, while
the 𝑁22 component depends on the energy density of the
scalar field, as well as of the scalar field potential. After
obtaining the components of the deviation curvature tensor,
we have formulated the general condition of the stability of
the scalar field cosmological models, which is determined by
two inequalities involving the second and the first derivative
of the scalar field potential, the energy density of the field, and
the time variation of the scalar field itself.

As an application of the developed formalism, we have
considered two scalar fieldmodels, both being relevant for the
study of both the early and the late stages of the cosmological
evolution. The first case we did consider is the scalar field
with exponential potential. We have studied in detail the
KCC geometric properties of this model. It turns out that
the Jacobi stability condition which can be expressed in
terms of the components of the deviation curvature tensor
is not satisfied during the cosmological evolution and that
the Universe described by the exponential potential scalar
field is in a Jacobi unstable state. This result is independent
of the numerical values of the parameter 𝜆, describing the
properties of the potential, and can also be inferred from
the behavior of the components of the deviation vector 𝜉𝑖,
with 𝜉1 diverging exponentially in time. As a second case, we
have considered the case of the Higgs type potential. For this

potential, the KCC geometric quantities show a complex
behavior. After a period in which the scalar field and the
potential are almost constant, the field starts to oscillate, with
the amplitude of the oscillations decreasing in time. This
behavior of the Higgs field is also reflected in the behavior
of the components of the deviation curvature tensor, which
are also some oscillating functions. The Jacobi stability of
this cosmological model strongly depends on the numerical
value of the parameter 𝜂 = 𝜆/4𝑀2. For small values of 𝜂,
the Universe evolves between successive Jacobi stable and
unstable states. With the increase of the numerical value of𝜂, the time intervals in which the Universe is Jacobi stable
decrease quickly, and for large values of 𝜂 the Universe is in a
Jacobi unstable state during its entire cosmological evolution.

As a second approach for the study of the Jacobi stability
of scalar field cosmologies, we have considered the first-
order dynamical system formulation of scalar field evolution
equations. In this approach, by introducing a new set of
variables, expressed in terms of the square root of the
potential, the time derivative of the scalar field, and the
Hubble function, respectively, the Friedmann equations in
the presence of scalar fields can be reformulated as a first-
order dynamical system, consisting of three highly nonlinear
ordinary differential equations. In order to apply the KCC
theory, this dynamical system must be lifted to the tangent
bundle and formulated as a second-order differential system.
We have analyzed, by using this approach, two specific scalar
field models, the phantom quintessence and the tachyon
scalar field with power law potentials. It turns out that for
this choice of the potential both scalar field models are Jacobi
unstable. The power law potential gives a very simple form
for the function Γ(𝑧), which takes constant values during
the cosmological evolution. This situation is similar to the
case of the exponential potential and leads to a significant
simplification of the mathematical formalism.

We have started our study of the applications of the KCC
theory to cosmological problems with the investigation of
the standard matter dominated cosmological models in their
dynamical system formulation. We have studied the Jacobi
stability of the critical points of different models, and we
have shown that they are Jacobi unstable. A full comparison
between the Jacobi and Lyapunov properties of the critical
points for second-order systems was given in [59, 60], and
hence we will not discuss in detail this relation. However, this
study of the critical points of matter dominated cosmological
models also shows the fundamental differences between
the Lyapunov stability and KCC theories: while Lyapunov
stability is mostly restricted to the study of critical points, the
KCC theory has the potential to investigate the deviation of
the full trajectory during the entire period of the cosmological
evolution. Therefore, we can consider a Lyapunov stability
analysis of steady states (called the linear analysis) and a
“Lyapunov type” stability analysis of the whole trajectory (the
KCC or Jacobi stability analysis), and these two methods are
complementary but distinct to each other.

The KCC theory also introduces the first set of KCC
invariants 𝜖𝑖, 𝑖 = 1, . . . , 𝑛, giving the contravariant KCC
derivative of the vector field 𝑦𝑖. The first KCC invariant can
be interpreted as an external force. We did not study in
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detail the time evolution of the first KCC invariant, since its
properties are not directly related to the stability issues that
were our main points of interest.

In the present paper, we have performed a stability
analysis of the scalar field cosmological models, in which
we have considered a description of the deviations of the
whole trajectories of the differential system describing the
cosmological dynamics, and we have provided some basic
theoretical and computational tools for this study. Further
investigations of the Jacobi stability properties of cosmolog-
ical models may provide some methods for discriminating
between different evolutionary scenarios, as well as for better
understanding of some other fundamental processes, like, for
example, structure formation that played an essential role in
the evolution of our Universe.

Appendix

A. The Nonlinear Connection,
the Curvature Deviation Tensor, and
the Geodesic Deviation Equations for
the Phantom Quintessence Scalar Field
Cosmological Model

The coefficients of the nonlinear connection associated with
the dynamical system describing the phantom quintessence
cosmological model are given by

𝑁11 = −3𝛾𝑚𝑥2 + 6𝜁𝑥2 − 3 (1 − 𝜁𝑥2)
+ 32 𝛾𝑚 (−𝑥2 − 𝑦2 + 1) ,

𝑁21 = −3𝛾𝑚𝑥𝑦 − √6𝜁𝑦𝑧,
𝑁31 = −√ 32 𝜁𝑦2,
𝑁12 = 𝑦 (6𝜁𝑥 − 3𝛾𝑚𝑥) + √ 32 𝑦𝑧,
𝑁22 = 3𝜁𝑥2 + 32 𝛾𝑚 (−𝑥2 − 𝑦2 + 1) + √ 32 𝑥𝑧 − 3𝛾𝑚𝑦2,
𝑁32 = √ 32 𝑥𝑦,
𝑁13 = √6𝑧2 [Γ (𝑧) − 1] ,𝑁23 = 0,𝑁33 = √6𝑥𝑧2Γ󸀠 (𝑧) + 2√6𝑥𝑧 [Γ (𝑧) − 1] .

(A.1)

The first KCC invariants 𝜖𝑖, 𝑖 = 1, 2, 3, are given by

𝜖1 = 32 {𝑥󸀠 (𝛾𝑚 − 3 (𝛾𝑚 − 2𝜁) 𝑥2 − 𝛾𝑚𝑦2 − 2)
− 𝑦 (6𝛾𝑚𝑥𝑦󸀠 + √6𝜁 (2𝑧𝑦󸀠 + 𝑦𝑧󸀠))} ,

𝜖2 = 12 {𝑥 (√6 (𝑧𝑦󸀠 + 𝑦𝑧󸀠) − 6 (𝛾𝑚 − 2𝜁) 𝑦𝑥󸀠)
+ √6𝑦𝑧𝑥󸀠 − 3 (𝛾𝑚 − 2𝜁) 𝑥2𝑦󸀠 − 9𝛾𝑚𝑦2𝑦󸀠+ 3𝛾𝑚𝑦󸀠} ,

𝜖3 = √6𝑧 ((Γ (𝑧) − 1) (𝑧𝑥󸀠 + 2𝑥𝑧󸀠) + 𝑥𝑧𝑧󸀠Γ󸀠 (𝑧)) .
(A.2)

All Berwald connection components are zero here. The
components of the curvature deviation tensor are𝑃11 = 14 {9 (4 (𝛾𝑚 − 2𝜁) 𝑥𝑥󸀠

+ (𝛾𝑚 − 3 (𝛾𝑚 − 2𝜁) 𝑥2 − 2)2)+ 6𝑦2 (−3 (𝛾𝑚 − 2) 𝛾𝑚 + 15𝛾𝑚 (𝛾𝑚 − 2𝜁) 𝑥2− √6 (−2𝛾𝑚𝜁 + 𝛾𝑚 + 4𝜁2) 𝑥𝑧 − 2𝜁𝑧2Γ (𝑧))+ 12𝛾𝑚𝑦𝑦󸀠 + 9𝛾2𝑚𝑦4} ,𝑃21 = 3𝛾𝑚𝑦𝑥󸀠 + 3𝑥 [𝛾𝑚𝑦󸀠 + 6𝛾2𝑚𝑦3 − 𝑦 (3 (𝛾𝑚 − 1) 𝛾𝑚
+ 𝜁𝑧2)] + 18𝛾𝑚 (𝛾𝑚 − 2𝜁) 𝑥3𝑦 + 3√ 32 (−4𝛾𝑚𝜁
+ 𝛾𝑚 + 8𝜁2) 𝑥2𝑦𝑧 + √6𝜁 (𝑧 (𝑦󸀠 + 6𝛾𝑚𝑦3
− 3 (𝛾𝑚 − 1) 𝑦) + 𝑦𝑧󸀠) ,

𝑃31 = 12 √ 32 𝑦 {−𝑦 [3 (𝛾𝑚 − 2) 𝜁
+ (−9𝛾𝑚𝜁 + 6𝛾𝑚 + 18𝜁2) × 𝑥2+ 2√6𝜁𝑥𝑧 (𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 1)] + 4𝜁𝑦󸀠+ 3𝛾𝑚𝜁𝑦3} ,

𝑃12 = 12 {𝑦 [6 (𝛾𝑚 − 2𝜁) 𝑥󸀠 + 36 (𝛾𝑚 − 2𝜁)2 𝑥3
− 3𝑥 (6 (𝛾𝑚 − 1) (𝛾𝑚 − 2𝜁) + 𝑧2 (1 − 2Γ (𝑧)))− 9√6 (𝛾𝑚 − 2𝜁) 𝑥2𝑧 − √6𝑧󸀠 + 3√6 (𝛾𝑚 − 1) 𝑧]+ 𝑦󸀠 (6 (𝛾𝑚 − 2𝜁) 𝑥 − √6𝑧) + 6𝛾𝑚𝑦3 (6 (𝛾𝑚 − 2𝜁)⋅ 𝑥 − √6𝑧)} ,

𝑃22 = 14 {2𝑥 [6 (𝛾𝑚 − 2𝜁) 𝑥󸀠 + 3√6𝑧
× (𝛾𝑚 + 2 (𝛾𝑚 (𝜁 − 2) − 2𝜁2) 𝑦2) − √6𝑧󸀠]− 2√6𝑧𝑥󸀠 + 9 (𝛾𝑚 − 2𝜁)2 𝑥4+ 6𝑥2 (3𝛾𝑚 (𝛾𝑚 − 2𝜁) (5𝑦2 − 1) + 𝑧2) − 6√6 (𝛾𝑚− 2𝜁) 𝑥3𝑧 + 9𝛾𝑚 (4𝑦𝑦󸀠 + 𝛾𝑚 (1 − 3𝑦2)2)
− 12𝜁𝑦2𝑧2} ,
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𝑃32 = − 12 √ 32 {𝑦 [2𝑥󸀠 + 3 (𝛾𝑚 − 2𝜁) 𝑥3 − 3𝛾𝑚𝑥
+ √6𝑥2𝑧 (−2𝑧Γ󸀠 (𝑧) − 4Γ (𝑧) + 3)] + 2𝑥𝑦󸀠
+ 𝑦3 ((𝛾𝑚 (9 − 6𝜁) + 12𝜁2) 𝑥 + √6𝜁𝑧)} ,

𝑃13 = √ 32 𝑧 {𝑧 [−3 (Γ (𝑧) − 1)
⋅ (−𝛾𝑚 + 3 (𝛾𝑚 − 2𝜁) 𝑥2 + 𝛾𝑚𝑦2 + 2) − 2𝑧󸀠Γ󸀠 (𝑧)]
+ 2√6𝑥𝑧3 × (Γ (𝑧) − 1) Γ󸀠 (𝑧) + 4√6𝑥𝑧2 (Γ (𝑧)
− 1)2 − 4 (Γ (𝑧) − 1) 𝑧󸀠} ,

𝑃23 = −3𝑦𝑧2 (Γ (𝑧) − 1) (√6𝛾𝑚𝑥 + 2𝜁𝑧) ,
𝑃33 = −𝑧 (√6𝑥󸀠 (𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2) + 3𝜁𝑦2𝑧 (Γ (𝑧)

− 1)) − √6𝑥𝑧󸀠 (𝑧2Γ󸀠󸀠 (𝑧) + 4𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2)
+ 6𝑥2𝑧2 (𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2)2 .

(A.3)

The geodesic deviation equations are obtained in the form

𝑑2𝜉1𝑑𝜏2 + 𝜉1 (−18 (𝛾𝑚 − 2𝜁) 𝑥𝑥󸀠 − 6𝛾𝑚𝑦𝑦󸀠)
− 2𝜉2 (𝑦 (3𝛾𝑚𝑥󸀠 + √6𝜁𝑧󸀠) + 𝑦󸀠 (3𝛾𝑚𝑥 + √6𝜁𝑧))
+ 𝜉1𝑑𝜏 (3𝛾𝑚 − 9 (𝛾𝑚 − 2𝜁) 𝑥2 − 3𝛾𝑚𝑦2 − 6) − 2 𝜉2𝑑𝜏
⋅ 𝑦 (3𝛾𝑚𝑥 + √6𝜁𝑧) − 2√6𝜁𝜉3𝑦𝑦󸀠 − √6𝜁 𝜉3𝑑𝜏 𝑦2
= 0,𝑑2𝜉2𝑑𝜏2 + √6𝜉3 (𝑦𝑥󸀠 + 𝑥𝑦󸀠) + 𝜉1
× (𝑦 (√6𝑧󸀠 − 6 (𝛾𝑚 − 2𝜁) 𝑥󸀠)
+ 𝑦󸀠 (√6𝑧 − 6 (𝛾𝑚 − 2𝜁) 𝑥))
+ 𝜉2 (𝑥󸀠 (√6𝑧 − 6 (𝛾𝑚 − 2𝜁) 𝑥) + √6𝑥𝑧󸀠
− 18𝛾𝑚𝑦𝑦󸀠) + √6 𝜉3𝑑𝜏 𝑥𝑦 + 𝜉1𝑑𝜏 𝑦 (√6𝑧
− 6 (𝛾𝑚 − 2𝜁) 𝑥) + 𝜉2𝑑𝜏 (3𝛾𝑚 − 3 (𝛾𝑚 − 2𝜁) 𝑥2
+ √6𝑥𝑧 − 9𝛾𝑚𝑦2) = 0,

𝑑2𝜉3𝑑𝜏2 + 2√6𝜉3 (𝑧𝑥󸀠 (𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2)
+ 𝑥𝑧󸀠 (𝑧2Γ󸀠󸀠 (𝑧) + 4𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2)) + 2√6
⋅ 𝜉3𝑑𝜏 𝑥𝑧 (𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2) + 2√6
× 𝜉1𝑧𝑧󸀠 (𝑧Γ󸀠 (𝑧) + 2Γ (𝑧) − 2) + 2√6 𝜉1𝑑𝜏 𝑧2 (Γ (𝑧)
− 1) = 0.

(A.4)

B. The Nonlinear Connection, the Curvature
Deviation Tensor, and the Geodesic
Deviation Equations for the Tachyon Scalar
Field Cosmological Model

The coefficients of the nonlinear connection associated with
the dynamical system describing the tachyon scalar field
cosmological model are given by

𝑁11 = 2√3𝑥 (√3𝑥 + 𝑦) − 3 (1 − 𝑥2) ,
𝑁21 = −√3 (1 − 𝑥2) 𝑧,
𝑁31 = −√3 (1 − 𝑥2) 𝑦,
𝑁12 = √32 (3𝑦 (2𝑥𝑦2 − 𝛾𝑚𝑥𝑦2(1 − 𝑥2)3) + 𝑦2𝑧) ,
𝑁22 = √32 {3 (2𝑥2𝑦 − 2𝛾𝑚𝑦√1 − 𝑥2)

+ 3 [𝛾𝑚 (1 − 𝑦2√1 − 𝑥2) + 𝑥2𝑦2] + 2𝑥𝑦𝑧} ,
𝑁32 = 12 √3𝑥𝑦2,
𝑁13 = 32 √3𝑦𝑧2 (Γ (𝑧) − 1) ,
𝑁23 = 32 √3𝑥𝑧2 (Γ (𝑧) − 1) ,
𝑁33 = 32 √3𝑥𝑦𝑧2Γ󸀠 (𝑧) + 3√3𝑥𝑦𝑧 (Γ (𝑧) − 1) .

(B.1)

The first KCC invariants 𝜖𝑖, 𝑖 = 1, 2, 3, are
𝜖1 = 𝑥󸀠 (9𝑥2 + 2√3𝑥𝑦𝑧 − 3) + √3 (𝑥2 − 1) (𝑧𝑦󸀠

+ 𝑦𝑧󸀠) ,
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𝜖2 = 12 (𝑥2 − 1)2 {√3 [−3𝛾𝑚𝑥√1 − 𝑥2𝑦3𝑥󸀠
+ (𝑥2 − 1)2 𝑦2𝑥󸀠 (6𝑥𝑦 + 𝑧) + 9𝛾𝑚𝑥2√1 − 𝑥2𝑦2𝑦󸀠
− 9𝛾𝑚√1 − 𝑥2𝑦2𝑦󸀠 + (𝑥2 − 1)2

× (𝑦󸀠 (3𝛾𝑚 + 𝑥𝑦 (9𝑥𝑦 + 2𝑧)) + 𝑥𝑦2𝑧󸀠)]} ,
𝜖3 = 32 √3𝑧 {(Γ (𝑧) − 1) [𝑦 (𝑧𝑥󸀠 + 2𝑥𝑧󸀠) + 𝑥𝑧𝑦󸀠]

+ 𝑥𝑦𝑧𝑧󸀠Γ󸀠 (𝑧)} .
(B.2)

All Berwald connection components are zero here. The
components of the curvature deviation tensor are

𝑃11 = 𝑥 [−2 (9𝑥󸀠 + √3𝑧𝑦󸀠) + 92 𝑦3𝑧 ( 𝛾𝑚√1 − 𝑥2 − 2) − 2√3𝑦 (𝑧󸀠 + 6𝑧)] − 12 𝑦𝑧 (4√3𝑥󸀠 + 3𝑦𝑧 (3Γ (𝑧) − 2)) + 81𝑥4 + 92⋅ 𝑥2 (𝑦2𝑧2 (Γ (𝑧) + 2) − 12) + 9𝑥3𝑦 (𝑦2 + 4√3) 𝑧 + 9,
𝑃21 = 12 {𝑧 [−9𝛾𝑚 − 4√3𝑥𝑥󸀠2 (−3𝛾𝑚 + 9𝑦2 + 8√3) + 27𝛾𝑚√1 − 𝑥2𝑦2 + 9𝑥4 (3𝑦2 + 2√3) + 6√3] + 9𝑥 (𝑥2 − 1)

⋅ 𝑦𝑧2 (Γ (𝑧) + 1) − 2√3 (𝑥2 − 1) 𝑧󸀠} ,
𝑃31 = √3𝑦 (−2𝑥𝑥󸀠4 − 12𝑥2 + 3) − √3 (𝑥2 − 1) 𝑦󸀠 + 32 𝑥 (𝑥2 − 1) 𝑦2𝑧 (3𝑧Γ󸀠 (𝑧) + 6Γ (𝑧) − 1) ,
𝑃12 = 14 𝑦 {{{{{6√3𝑦2( 𝛾𝑚(1 − 𝑥2)5/2 − 2) 𝑥󸀠2𝑦 × ( 4√3𝛾𝑚𝑦𝑥󸀠(1 − 𝑥2)5/2 + (45𝑦2 + 6√3) 𝑧)

+ 1(1 − 𝑥2)5/2 [9𝑥3𝑦 (18 (1 − 𝑥2)5/2 𝑦3 + 12√3 × (1 − 𝑥2)5/2 𝑦 − 2√3𝛾𝑚𝑦󸀠 + 3𝛾2𝑚𝑦 + 27𝛾𝑚𝑦3 − 8√3𝛾𝑚𝑦)]
+ 9𝑥𝑦 [[[2√3 ( 𝛾𝑚(1 − 𝑥2)5/2 − 2) 𝑦󸀠 + 9𝛾𝑚𝑦3 (𝛾𝑚√1 − 𝑥2 − 2)(1 − 𝑥2)5/2 + 𝑦
× ( (2√3 − 3𝛾𝑚) (𝛾𝑚 − 2 (1 − 𝑥2)5/2)(1 − 𝑥2)5/2 + 𝑧2 (Γ (𝑧) + 1))]]] + 27𝛾𝑚𝑥5𝑦2 (2√3 − 3𝑦2)(1 − 𝑥2)5/2 + 27𝛾𝑚𝑥4𝑦3𝑧(1 − 𝑥2)5/2 − 27𝛾𝑚𝑦3𝑧(1 − 𝑥2)5/2
− 4√3𝑧𝑦󸀠 + 𝑦 (9𝛾𝑚𝑧 − 2√3 (𝑧󸀠 + 3𝑧))}}}}} ,

𝑃22 = 14 (𝑥2 − 1)2 {−4 (𝑥2 − 1)2 𝑦 [𝑧 (√3𝑥󸀠 − 9𝛾𝑚𝑥) + √3𝑥 (9𝑥𝑦󸀠 + 𝑧󸀠)] + 18𝛾𝑚𝑥√3 − 3𝑥2𝑦2𝑥󸀠 + 3 (𝑥2 − 1)2
⋅ 𝑦2 [3𝑥 (𝑥 (18𝛾𝑚 + 𝑧2 (Γ (𝑧) + 1)) − 4√3𝑥󸀠) − 2𝑧2] − 36𝛾𝑚𝑥2√3 − 3𝑥2𝑦𝑦󸀠 + 36𝛾𝑚√3 − 3𝑥2𝑦𝑦󸀠 + (𝑥2 − 1)2 (27𝛾2𝑚− 4√3𝑥𝑧𝑦󸀠) − 243 (𝑥2 − 1) 𝑦4 (𝛾2𝑚 − 𝑥6 + 𝑥4) − 162𝛾2𝑚√1 − 𝑥2𝑦2 + 162𝛾2𝑚𝑥2√1 − 𝑥2𝑦2 + 486𝛾𝑚𝑥4√1 − 𝑥2𝑦4
− 486𝛾𝑚𝑥2√1 − 𝑥2𝑦4 + 90𝛾𝑚𝑥3√1 − 𝑥2𝑦3𝑧 − 90𝛾𝑚𝑥√1 − 𝑥2𝑦3𝑧 + 36𝑥 (𝑥2 − 1)2 (4𝑥2 − 1) 𝑦3𝑧} ,

𝑃32 = 14 𝑦 {𝑦 (9𝛾𝑚𝑥 − 2√3𝑥󸀠) − 4√3𝑥𝑦󸀠 − 9𝛾𝑚𝑥𝑦3√1 − 𝑥2 + 9𝑥 (7𝑥2 − 4) 𝑦3 + 3𝑦2𝑧 (𝑥2 (3𝑧Γ󸀠 (𝑧) + 6Γ (𝑧) − 2) − 2)} ,
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𝑃13 = − 14 (1 − 𝑥2)3/2 {3𝑧 [−2√3 − 3𝑥2 (𝑥2 − 1) × 𝑧𝑦󸀠 (Γ (𝑧) − 1)
+ 2√3 − 3𝑥2 (𝑥2 − 1) 𝑦 ((Γ (𝑧) − 1) × ((9𝑥2 − 3) 𝑧 − 2𝑧󸀠) − 𝑧𝑧󸀠Γ󸀠 (𝑧))
− 3𝑥 (1 − 𝑥2)3/2 𝑦2𝑧2 (Γ (𝑧) − 1) (3𝑧Γ󸀠 (𝑧) + 6Γ (𝑧) − 1) + 9𝑥2𝑦3𝑧 (𝛾𝑚 + 2√1 − 𝑥2𝑥2 − 2√1 − 𝑥2) (Γ (𝑧) − 1)]} ,

𝑃23 = 14√1 − 𝑥2 {3𝑧 [−2√1 − 𝑥2𝑧 (Γ (𝑧) − 1) × (√3𝑥󸀠 + 3𝑦𝑧)
+ 𝑥 (𝑧 (√1 − 𝑥2 × (−9𝛾𝑚 − 2√3𝑧󸀠Γ󸀠 (𝑧) + 9𝛾𝑚Γ (𝑧)) − 27𝛾𝑚𝑦2 (Γ (𝑧) − 1)) − 4√3 − 3𝑥2 (Γ (𝑧) − 1) 𝑧󸀠)
+ 3√1 − 𝑥2𝑥2𝑦𝑧2 (Γ (𝑧) − 1) (3𝑧Γ󸀠 (𝑧) + 6Γ (𝑧) − 2) + 27√1 − 𝑥2𝑥3𝑦2𝑧 (Γ (𝑧) − 1)]} ,

𝑃33 = 34 {−2√3𝑦 (2𝑧 (𝑥󸀠 (Γ (𝑧) − 1) + 2𝑥𝑧󸀠Γ󸀠 (𝑧)) + 𝑧2 (𝑥󸀠Γ󸀠 (𝑧) + 𝑥𝑧󸀠Γ󸀠󸀠 (𝑧)) + 2𝑥 (Γ (𝑧) − 1) 𝑧󸀠) − 2√3𝑥𝑧𝑦󸀠 (𝑧Γ󸀠 (𝑧)
+ 2Γ (𝑧) − 2) + 3𝑦2𝑧2 × [3𝑥2 (𝑧2Γ󸀠2 + 4𝑧 (Γ (𝑧) − 1) Γ󸀠 (𝑧) + 4Γ (𝑧)2 − 7Γ (𝑧) + 3) − 2Γ (𝑧) + 2]} .

(B.3)

The geodesic deviation equations are obtained in the form𝑑2𝜉1𝑑𝜏2 + 2 𝑑𝜉1𝑑𝜏 (9𝑥2 + 2√3𝑥𝑦𝑧 − 3) + 2√3 (𝑥2 − 1)
⋅ 𝑦 𝑑𝜉3𝑑𝜏 + 2√3 (𝑥2 − 1) 𝑧 𝑑𝜉2𝑑𝜏+ 4𝜉1 [𝑥󸀠 (9𝑥 + √3𝑦𝑧) + √3𝑥 (𝑧𝑦󸀠 + 𝑦𝑧󸀠)]
+ 2√3𝜉2 [(𝑥2 − 1) 𝑧󸀠 + 2𝑥𝑧𝑥󸀠]
+ 2√3𝜉3 [(𝑥2 − 1) 𝑦󸀠 + 2𝑥𝑦𝑥󸀠] = 0,𝑑2𝜉2𝑑𝜏2 + 𝑑𝜉2𝑑𝜏 (3√3𝛾𝑚 − 9√3𝛾𝑚𝑦2√1 − 𝑥2 + 9√3𝑥2𝑦2
+ 2√3𝑥𝑦𝑧) + 9√3𝜉1𝑥𝑦2(2 − 𝛾𝑚(1 − 𝑥2)3/2) 𝑦󸀠
+ √3𝜉3𝑦2𝑥󸀠 + √3𝑦3 [3𝑥𝜉󸀠1(2 − 𝛾𝑚(1 − 𝑥2)3/2)
+ 3𝜉1(− 2𝛾𝑚𝑥2(1 − 𝑥2)5/2 − 𝛾𝑚(1 − 𝑥2)5/2 + 2) 𝑥󸀠]
+ 𝜉2 [− 18√3𝛾𝑚𝑦𝑦󸀠√1 − 𝑥2 + 18√3𝑥2𝑦𝑦󸀠 + 2√3𝑦𝑧𝑥󸀠
+ 9√3𝑥𝑦2(2 − 𝛾𝑚(1 − 𝑥2)3/2) 𝑥󸀠 + 2√3𝑥𝑧𝑦󸀠
+ 2√3𝑥𝑦𝑧󸀠] + √3𝑥𝑦2 𝑑𝜉3𝑑𝜏 + 2√3𝜉3𝑥𝑦𝑦󸀠

+ √3𝜉1𝑦2𝑧󸀠 + √3𝑦2𝑧 𝑑𝜉1𝑑𝜏 + 2√3𝜉1𝑦𝑧𝑦󸀠 = 0,
𝑑2𝜉3𝑑𝜏2 + 𝜉3 [3√3𝑦𝑧2𝑥󸀠Γ󸀠 (𝑧)

+ 6√3𝑦𝑧 (𝑥󸀠 (Γ (𝑧) − 1) + 2𝑥𝑧󸀠Γ󸀠 (𝑧))
+ 3√3𝑥𝑧2𝑦󸀠Γ󸀠 (𝑧) + 6√3𝑥𝑧𝑦󸀠 (Γ (𝑧) − 1)+ 6√3𝑥𝑦 (Γ (𝑧) − 1) 𝑧󸀠 + 3√3𝑥𝑦𝑧2𝑧󸀠Γ󸀠󸀠 (𝑧)]
+ 3√3𝜉2𝑧2 [𝑥󸀠 (Γ (𝑧) − 1) + 𝑥𝑧󸀠Γ󸀠 (𝑧)]
+ 𝑑𝜉3𝑑𝜏 [3√3𝑥𝑦𝑧2Γ󸀠 (𝑧) + 6√3𝑥𝑦𝑧 (Γ (𝑧) − 1)]
+ 3√3𝑥𝑧2 𝑑𝜉2𝑑𝜏 (Γ (𝑧) − 1) + 6√3𝜉2𝑥𝑧 (Γ (𝑧) − 1)
⋅ 𝑧󸀠 + 3√3𝜉1𝑧2 [𝑦󸀠 (Γ (𝑧) − 1) + 𝑦𝑧󸀠Γ󸀠 (𝑧)]
+ 3√3𝑦𝑧2 𝑑𝜉1𝑑𝜏 (Γ (𝑧) − 1) + 6√3𝜉1𝑦𝑧 (Γ (𝑧) − 1)
⋅ 𝑧󸀠 = 0.

(B.4)

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational
evidence from supernovae for an accelerating universe and



24 Advances in High Energy Physics

a cosmological constant,”TheAstronomical Journal, vol. 116, no.
3, Article ID 1009, 1998.

[2] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements
ofΩ andΛ from42high-redshift supernovae,”TheAstrophysical
Journal, vol. 517, no. 2, p. 565, 1999.

[3] R. A. Knop, G. Aldering, R. Amanullah et al., “New constraints
on Ω𝑀, ΩΛ, and w from an independent set of 11 high-redshift
supernovae observed with the hubble space telescope,” The
Astrophysical Journal, vol. 598, no. 1, pp. 102–137, 2003.

[4] R. Amanullah, C. Lidman, D. Rubin et al., “Spectra and Hubble
Space Telescope light curves of six type Ia supernovae at 0.511 <𝑧 < 1.12 and the Union2 compilation,” The Astrophysical
Journal, vol. 716, no. 1, p. 712, 2010.

[5] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata,
A. G. Riess, and E. Rozo, “Observational probes of cosmic
acceleration,” Physics Reports, vol. 530, no. 2, pp. 87–255, 2013.

[6] P. A. R. Ade, N. Aghanim, M. Arnaud et al., “Planck 2015
results. XVIII. Background geometry & topology,” Astronomy
& Astrophysics, vol. 594, article A18, 2015.

[7] P. J. Peebles and B. Ratra, “The cosmological constant and dark
energy,” Reviews of Modern Physics, vol. 75, no. 2, pp. 559–606,
2003.

[8] T. Padmanabhan, “Cosmological constant—the weight of the
vacuum,” Physics Reports, vol. 380, no. 5-6, pp. 235–320, 2003.

[9] S. Nojiri and S. D. Odintsov, “Unified cosmic history in
modified gravity: from F(R) theory to Lorentz non-invariant
models,” Physics Reports, vol. 505, no. 2–4, pp. 59–144, 2011.

[10] M. Li, X.-D. Li, S. Wang, and Y. Wang, “Dark energy: a brief
review,” Frontiers of Physics, vol. 8, no. 6, pp. 828–846, 2013.

[11] M. J.Mortonson, D. H.Weinberg, andM.White, “Dark Energy:
a short review,” https://arxiv.org/abs/1401.0046.

[12] R. R. Caldwell, R. Dave, and P. J. Steinhardt, “Cosmological
imprint of an energy component with general equation of state,”
Physical Review Letters, vol. 80, no. 8, pp. 1582–1585, 1998.

[13] S. Tsujikawa, “Quintessence: a review,” Classical and Quantum
Gravity, vol. 30, no. 21, Article ID 214003, 2013.

[14] L. P. Chimento, A. S. Jakubi, and D. Pavón, “Enlarged
quintessence cosmology,” Physical Review D, vol. 62, no. 6,
Article ID 063508, 2000.

[15] T. Chiba, T. Okabe, and M. Yamaguchi, “Kinetically driven
quintessence,” Physical Review D, vol. 62, no. 2, Article ID
023511, 2000.

[16] C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt,
“Dynamical solution to the problem of a small cosmological
constant and late-time cosmic acceleration,” Physical Review
Letters, vol. 85, no. 21, pp. 4438–4441, 2000.

[17] C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt,
“Essentials of k-essence,” Physical Review D, vol. 63, no. 10,
Article ID 103510, 2001.

[18] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Muko-
hyama, “Ghost condensation and a consistent infrared modi-
fication of gravity,” Journal of High Energy Physics, vol. 2004,
article 074, 2004.

[19] F. Piazza and S. Tsujikawa, “Dilatonic ghost condensate as dark
energy,” Journal of Cosmology and Astroparticle Physics, vol.
2004, no. 7, article 004, 2004.

[20] R. R. Caldwell, “A phantom menace? Cosmological conse-
quences of a dark energy component with super-negative
equation of state,” Physics Letters B, vol. 545, no. 1-2, pp. 23–29,
2002.

[21] S. M. Carroll, M. Hoffman, and M. Trodden, “Can the dark
energy equation-of-state parameter w be less than −1?” Physical
Review D, vol. 68, no. 2, Article ID 023509, 2003.

[22] P. Singh, M. Sami, and N. Dadhich, “Cosmological dynamics of
a phantom field,” Physical Review D, vol. 68, no. 2, Article ID
023522, 2003.

[23] M. Sami and A. Toporensky, “Phantom field and the fate of the
universe,”Modern Physics Letters A, vol. 19, no. 20, pp. 1509–1517,
2004.

[24] J. M. Cline, S. Jeon, and G. D. Moore, “The phantom menaced:
constraints on low-energy effective ghosts,” Physical Review D,
vol. 70, no. 4, Article ID 043543, 2004.

[25] E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology
in a (phantom) scalar-tensor theory: dark energy and the
cosmic speed-up,” Physical Review D, vol. 70, no. 4, Article ID
043539, 2004.

[26] E. Elizalde, S. Nojiri, S. D. Odintsov, D. Sáez-Gómez, and V.
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[56] S. S. Chern, “Sur la géométrie d’un système d’équations
différentielles du second order,” Bulletin des Sciences Mathema-
tiques, vol. 63, pp. 206–212, 1939.
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