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We consider the internal structure and the physical properties of specific classes of neutron, quark and
Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a
combination of the metric and Palatini f(R) formalisms. It turns out that the theory is very successful in
accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and
the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the
equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-
Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini
theory, and we investigate their solutions numerically for different equations of state of neutron and quark
matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor
definition of the potential can be represented as an Clairaut differential equation, and provides an explicit
form for f(R) given by f(R) ~ R + A, Where Ay is an effective cosmological constant. Furthermore,
stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate
equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity,
thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general
result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their
general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular
choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also
investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes
the form of the bag model equation of state describing quark matter. As a possible astrophysical application of
the obtained results, we suggest that stellar mass black holes, with masses in the range of 3.8 and 6 M,

respectively, could be in fact hybrid metric-Palatini gravity neutron or quark stars.
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I. INTRODUCTION

Despite its remarkable success on relatively small
astronomical scales, such as the Solar System and compact
astrophysical objects, Einstein’s general relativity (GR)
presently faces two deep conceptual crises, related to the
dark energy and the dark matter problem. The dark energy
problem was raised by several high precision astronomical
observations of the distant Type la supernovae, which have
provided the unexpected result that in the Universe a
transition to an accelerating, de Sitter type phase has taken
place recently [1-5]. An equally intriguing question is
related to the matter-energy balance of the Universe.
In order to close it according to the cosmological
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observations, a second, and equally mysterious component
of the Universe, called dark matter, is necessary. Dark
matter is usually assumed to be a nonbaryonic and non-
relativistic (cold) component of the Universe. Its introduc-
tion is necessary on a fundamental level for explaining the
observed dynamics of the hydrogen clouds rotating around
galaxies, which have flat, nondecaying rotation curves, as
opposed to the expected Keplerian velocities. A second
observation requiring the presence of dark matter is the
virial mass discrepancy in clusters of galaxies [6,7]. Up to
now, no direct detection/observation of the dark matter has
been reported, and presently the only evidence for its
existence is its gravitational interaction with baryonic
matter. Presently, after a long period of intensive observa-
tional and experimental efforts, the particle nature of the
dark matter is still unknown.

Hence, these astronomical observations strongly suggest
that at large scales the force of gravity may not
behave according to standard GR, as derived from the
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Hilbert-Einstein ~ action, S = [(R/2k* + L,,)/=gd"x,
where R is the Ricci scalar, « is the gravitational coupling
constant, and L,, is the matter Lagrangian, and that a
generalization of the Hilbert-Einstein action may be
required for a full understanding of the gravitational
interaction. One of the promising ways to extend GR is
related to the modification of the geometric part of the
Hilbert-Einstein Lagrangian. Such an approach was intro-
duced in [8,9] by assuming that the geometric part of the
action is given by an arbitrary function f(R) of the Ricci
scalar, so that the total Hilbert-Einstein action can be
written as S = [ (f(R)/2«* + L,,),/=gd*x. For in depth
discussions and reviews of modified and f(R) type gravity
theories, see [10-18]. The f(R) modified theories of
gravity can give a satisfactory explanation to the recent
cosmological observations, and they can also provide a
solution to the dark matter problem, which can be inter-
preted as a geometric effect in the framework of the
theory [19].

It is well known that Einstein’s GR can be derived in two
different theoretical frameworks, the metric and the Palatini
formalisms [20]. Once applied to the Hilbert-Einstein
action, these two approaches lead to the same equations
of motion. However, this is not the case in f(R) gravity, and
for other extended theories of gravity, where it turns out that
the field equations obtained using the metric approach are
generically different from their Palatini (or metric-affine)
counterparts [20]. While the metric approach typically
leads to higher-order derivative field equations, in the
Palatini approach the resulting equations of motion are
always second order. However, in the Palatini formulation
certain algebraic relations between the matter fields and the
affine connection appear, with the latter being now deter-
mined by a set of equations coupling it to the matter fields
and the metric. An extension of the f(R) gravity theory,
based on a hybrid combination of the metric and Palatini
mathematical formalisms, in which the (purely metric)
Einstein-Hilbert action is supplemented with (metric-
affine) correction terms constructed a la Palatini, was
proposed in [21]. Both the metric and the Palatini f(R)
theories allow the formulation of simple extensions of GR
with interesting properties. However, at the same time, they
each suffer from different types of pathologies. Therefore,
establishing a bridge between these two apparently differ-
ent approaches may offer a possibility of eliminating their
individual pathologies. Further generalizations of the f(R)
gravity theories involving a geometry-matter coupling were
proposed in [22,23], respectively.

Hence, in [21,24] a hybrid combination of the metric
and Palatini formalisms was used to construct a gravita-
tional Lagrangian. As a main result of this approach, it was
found that viable models containing elements of both
formalisms are possible. An important result of these
theories is the possibility to generate long-range forces
without entering into conflict with the local Solar System
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tests of gravity. An important technical result is the
possibility of using a scalar-tensor representation for the
hybrid metric-Palatini theories, which simplifies the analy-
sis of the field equations and the construction of solutions.
An example of such hybrid metric-Palatini theory is the
one based on the gravitational Lagrangian R + f(R),
where R is the Palatini scalar curvature. Introducing such
an action means that we maintain all the positive results of
GR at the scale of the Solar System and of compact
objects, which are included in the Einstein-Hilbert part of
the action R, while the metric-affine f(R) component adds
novel features that could explain the recent cosmological
observations. A related formalism for the study of f(R)
theories that interpolate between the metric and Palatini
regimes, and called C-theory, was proposed in [25,26]. A
generalization of the hybrid metric-Palatini gravity was
proposed in [27].

Much attention has been invested in the hybrid metric-
Palatini gravity. In a cosmological context, the properties of
the Einstein static universe were studied in [28]. The
cosmological applications of metric-Palatini gravity were
explored in [29], and cosmological solutions coming from
the scalar-tensor representation were presented. Criteria to
obtain the late-time cosmic acceleration were discussed,
and the field equations were analyzed as a dynamical
system. Several classes of dynamical cosmological solu-
tions, depending on the functional form of the effective
scalar field potential, describing both accelerating and
decelerating universes were also explicitly obtained. The
evolution of the linear perturbations in the hybrid metric-
Palatini theory was studied in [30], where the full set of
linearized evolution equations for the perturbed potentials
were derived. It turns out that the main deviations from the
ACDM model arise in the distant past, with an oscillatory
signature in the ratio between the Newtonian potentials ®
and W. Two classes of models were studied in [31], where
both models recover GR with an effective cosmological
constant at late times. This occurs because the Palatini
Ricci scalar evolves towards and asymptotically settles at
the minimum of its effective potential during the cosmo-
logical evolution. With the use of a combination of cosmic
microwave background, supernovae and baryonic acoustic
oscillations the free parameters of the models were con-
strained. It is interesting to note that for both models
considered the maximum deviation from the gravitational
constant G is of the order of 1%. The cosmology of the
metric-Palatini theories was also studied using the dynami-
cal system approach in [32] by formulating the propagation
equation as an autonomous system. The analysis resulted in
the standard cosmological fixed points, and new accelerat-
ing solutions were found that can be attractors in the
phase space.

In the context of dark matter, the virial theorem for
galaxy clusters in hybrid metric-Palatini gravity was
derived in [33], where it was shown that the total virial
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mass is proportional to the effective mass associated with
the new terms generated by the effective scalar field and the
baryonic mass. Hence, the geometric terms in the gener-
alized virial theorem may account for the virial mass
discrepancy in clusters of galaxies. Astrophysical applica-
tions of the model were also considered, and it was shown
that the model predicts that the mass associated to the scalar
field and its effects extend beyond the virial radius of the
clusters of galaxies. The possibility that the behavior of the
rotational velocities of test particles gravitating around
galaxies can be explained within the framework of the
hybrid metric-Palatini gravitational theory was investigated
in [34]. The tangential velocity of test particles can be
explicitly obtained as a function of the scalar field of the
equivalent scalar-tensor description. Therefore, all the
physical and geometrical quantities and the numerical
parameters in the hybrid metric-Palatini model can be
expressed in terms of observable/measurable parameters,
such as the tangential velocity, the baryonic mass of the
galaxy, the Doppler frequency shifts, and the stellar
dispersion velocity. Furthermore, the well-formulation
and well-posedness of the Cauchy problem were discussed
for hybrid metric-Palatini gravity in [35]. Wormhole
solutions have also been obtained in the hybrid metric-
Palatini theory [36], where the higher order terms support
theses exotic geometries. For a recent review of hybrid
metric-Palatini gravity, see [37].

Spherical symmetry has played an important role in GR,
since a large class of solutions of Einstein’s gravitational
field equations, describing the interior structure of relativ-
istic compact objects, can be obtained under this
assumption. The search for exact solutions describing static
neutral, charged, isotropic or anisotropic stellar type
configurations has continuously attracted the interests of
the scientific community. A huge number of analytical
solutions of the Einstein gravitational field equations
describing the interior structure of the static fluid spheres
were found in the past 100 years (for reviews of the interior
solutions of the Einstein gravitational field equations, see
[38—40]). The study of the stellar structure can also provide
important constraints on modified theories of gravity.
Presently, a large number of neutron star masses are
available, due to a significant increase in the precision
of the observations [41,42]. These observations have
revealed an intrinsically complex distribution of the masses
of the neutron stars, with the important conclusion that last
century’s paradigm, with a single, 1.4 M, mass scale, is
not supported by the astronomical data. A bimodal or even
more complex distribution can actually be seen in the
numerical data [42]. Observations performed through
pulsar timing [43,44] have confirmed with a high precision
that some neutron stars have masses of around 2 M. On
the other hand, firm limits on the maximum and minimum
values of the neutron star masses in nature are still
unknown. Besides the information of the maximum masses
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and radii of neutron or other stars, observations of the
surface gravitational redshift can also provide important
constraints on modified theories of gravity. The structure
and physical properties of specific classes of neutron, quark
and exotic stars in various modified gravity theories have
been extensively studied in [45-56].

It is the goal of this paper to investigate the properties of
relativistic compact high density stars in the hybrid metric-
Palatini theory in its scalar-tensor version. By adopting a
spherically symmetric geometry and a perfect fluid matter
source, as a first step in our study we obtain the mass
continuity equation and the Tolman-Oppenheimer-Volkoff
equation, describing, together with the generalized Klein-
Gordon equation satisfied by the scalar field, the macro-
scopic properties of the star. The structure equations of the
hybrid metric-Palatini theory are then solved numerically
for several prescribed equations of state of the dense matter.
As specific examples of high density compact objects, we
consider stars described by the causal stiff fluid (Zeldovich)
equation of state, with the property that the speed of sound
in the dense matter equals the speed of light; the radiation-
type equation of state, describing a photon gas, for which
the trace of the energy-momentum tensor is zero; the quark
matter equation of state, and, finally, the Bose-Einstein
condensate equation of state, corresponding to a polytropic
equation of state with polytropic index n = 1. For all these
physical models, the global astrophysical parameters of the
stars (radius and mass), as well as the scalar field, are
obtained in both standard GR and in the hybrid metric-
Palatini gravity theory. This procedure allows an in-depth
comparison of the two approaches for the description of
stellar structure and properties. As a general conclusion of
our study, we find that hybrid metric-Palatini gravity allows
the existence of more massive stars, as compared to GR.
Furthermore, two classes of hybrid metric-Palatini stellar
models, corresponding to two fixed forms of the scalar
field, are also investigated in detail. An interesting result of
this analysis is that in the case of a constant scalar field,
which is the minimum of a Higgs type potential, the
equation of state of the matter takes the form of the bag
model equation of state, describing quark matter.

The present paper is organized as follows. The hybrid
metric-Palatini gravity theory is briefly presented in
Sec. II. The system of gravitational field equations,
describing the star interior, are presented in Sec. III, where
the structure equations of the star (mass continuity, Tolman-
Oppenheimer-Volkoff, and Klein-Gordon) are also derived,
and reformulated in a dimensionless form. The structure
and global astrophysical parameters of stiff fluid, radiation
fluid, quark matter and Bose-Einstein Condensate stars are
obtained by numerically integrating the structure equations,
in Sec. IV. Stellar models with fixed forms of the scalar
field are analyzed in Sec. V. We discuss and conclude our
results in Sec. VI
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II. HYBRID METRIC-PALATINI GRAVITY:
FORMALISM

The action for the hybrid metric-Palatini gravity is [21]

= [ @R+ FR) + (1)

where k? = 87G,/c*, with G, and ¢ denoting the standard
gravitational constant and the speed of light, respectively,
S, is the matter action, R is the metric Einstein-Hilbert
term, R = ¢*R,, is the Palatini curvature, and R, is

defined in terms of an independent connection I, as

R

w =

I, —1%, +1T90%,

uva T p

~ Il 2)

Varying the action (1) with respect to the metric, one
obtains the following gravitational field equations

LRy =T (3)

G, +FR)R, — 5

where the matter energy-momentum tensor is defined as

ne=-(75) N

The independent connection is compatible with the metric
F(R )Gy conformal to g,,; the conformal factor is given by

4)

F(R)=df(R)/dR. The latter considerations imply that
R =R 2L pw) FeR)
» TIF(R) " v
L vrmy, -t L o orm). (5)
FR) Ve T2 F(R) I

Note that R can be obtained from the trace of the field
equations (3), which yields: F(R)R —2f(R) — R = k°T.

The hybrid metric-Palatini action (1) can be turned into a
scalar-tensor theory by introducing an auxiliary field E,
given by the following action (we refer the reader to [21]
for more details):

:d;/ﬁ“f@m+ﬂﬂ+fuMR—E»(®

The field E is dynamically equivalent to the Palatini scalar
R if f"(R) # 0. Defining

p=[(E)., V(p)=Ef(E)-f(E)., (7)

the action becomes

s=50 [ dr/TR+ R -V + S,
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Varying this action with respect to the metric, the scalar ¢
and the connection yields the following field equations:

1
Rm/ + ¢R/w - 5 (R + (,Z’)R - V)g/w = Kszn (9)
R-V,=0, (10)
ValV=bg") = 0. (11)

respectively.
It is useful to note that Eq. (7) is a Clairaut differential
equation [57], that is,

Ef(E) - f(E) = V(f'(E)). (12)

It admits a general linear solution
F(E) = hE = V(h), (13)

for arbitrary V(¢) and a singular solution followed from the
equation

oV(f'(E))
af’

Note that the solution of Eq. (11) implies that the
independent connection is the Levi-Civita connection of
a metric h,, = ¢g,,. Thus, we are dealing with a bi-metric
theory, and R, and R, are related by

~E=0. (14)

1
Rﬂb _R 2¢2 M¢8U¢ ¢ <vﬂvu¢+§gﬂym¢> ’ (15)
and consequently,

R =R+ =—0,00"¢p — 7D¢ (16)

2¢2 H ¢

which can be used in the action (8) to get rid of the
independent connection and obtain the following scalar-
tensor representation [21]:

S= 22 d%¢*{m+¢m+-¢8¢w¢ V(g)| +

It is important to note that this action differs fundamentally
from the w = —3/2 Brans-Dicke theory in the coupling of
the scalar to the curvature.

Now substituting Egs. (10) and (15) in Eq. (9), the metric
field equation can be written as an effective Einstein field
equation, i.e. G, 2Tfj,ff, where the effective energy-
momentum tensor is given by
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eff _

1
=7
HU 1+¢{ HU

+V,V, ¢ -

11
-2 |:§g,ul/(v +20¢)

SN YR YO |

The scalar field is governed by the second-order evolu-
tion equation (we refer the reader to [21] for more details),

2¢ 3 3

(18)

which is an effective Klein-Gordon equation. This last
expression shows that, unlike in the Palatini (w = —3/2)
case, the scalar field is dynamical. Thus, the theory is not
affected by the microscopic instabilities that arise in
Palatini models with infrared corrections [20]. As for the
matter energy-momentum tensor, it is conserved independ-
ently, so that VT = 0.

It is important to analyze the post-Newtonian parameters
of the theory, in order to determine the viability of the
theory with local gravitational tests. To this effect, we
consider the post-Newtonian analysis and consider the
perturbations of Egs. (17) and (18) in a Minkowskian
background. Consider ¢ = ¢g + ¢(x), where ¢, is the
asymptotic value of the field far away from the local
system, and a quasi-Minkowskian coordinate system in
which g,, & n,, + h,,, with |h, | < 1. This provides the
standard post-Newtonian metric up to second order for this
class of theories, with the following results (we refer the
reader to Ref. [37] for details):

(19)

(20)
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1
3

mg) = [2V - V¢ - ¢(1 + ¢)V¢¢]|¢=¢o’ (21)

In the hybrid metric-Palatini theory there are two possibil-
ities to obtain that the PPN parameter is y &~ 1. Note that the
first one is the same as in f(R) theories and involves a very
massive scalar field [14]. The second possibility resides
imposing ¢, < 1, so that the Yukawa-type corrections are
very small regardless of the magnitude of m,. This latter
case could allow for the existence of a long-range scalar
field able to modify the cosmological dynamics, but leaves
the local gravity tests unaffected.

III. THE HYDROSTATIC EQUILIBRIUM
EQUATIONS FOR SPHERICALLY SYMMETRIC
STARS IN HYBRID METRIC-PALATINI GRAVITY

Consider the following line element in curvature coor-
dinates, which represents a static and spherically symmetric
geometry,
ds® =

—edr + N dr? + 17 (d0? +sin* 0dg?),  (22)

where the metric functions v(r) and A(r) are functions of
the radial coordinate and denote the mass and the redshift
functions, respectively, with radial coordinate range
0 <r < oo. It is possible to construct asymptotically flat
spacetimes, in which v(r) - 0 and A(r) — O as r — oco. For
the matter energy-momentum tensor, 7,,, we adopt the
perfect fluid form, so that in the comoving frame with four-
velocity u# = (e‘”/ 2,0,0,0) it has the components
Ty = diag(—pc?, p,, ps» p;), where p is the energy density,
and p, and p, are the radial and tangential pressures,
respectively.

Using the metric (22), the effective Einstein field equa-
tion (17) provides the following gravitational field equations

12 /
ol = 5l =1 =1+ ) =g =20 L e ) . (23)
e = [l =0+l avp o (54243 e (24)
1 ! !/ ! ,—A /! 2 / /!
sz,(r):[<%+<%)2+%>e_’1—%/16r (l—f—r%)](l—i—qﬁ) [(15” i Lm +‘ée—i<1—%>+§, (25)

where we have denoted by a prime the derivative with respect to radial coordinate r. The effective Klein-Gordon equation (18)is

given by

4)/2
2¢ +

¢/I/,

o+ e+

P
2

¢
3

/ 2
et + 22V —(1+¢)V, ‘%K T (26)
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The conservation of the matter energy-momentum tensor
gives the following relation between the components of the
energy-momentum tensor, and the metric tensor component v,

2p,  2(p, -
yo 2 (P =pr) (27)
pe? + p, r

Note that Egs. (23)-(26) provide four independent
equations, for seven unknown quantities, i.e. p(r), p,(r),
pi(r), v(r), A(r), ¢(r) and V(r). Thus, the system of
equations is underdetermined, so that we reduce the
number of unknown functions by assuming suitable con-
ditions. In the following we restrict our analysis to the
isotropic pressure distribution case only, by assum-

ing p, = p, = p.

A. The mass continuity and the
Tolman-Oppenheimer-Volkoff equation

As a first step in our analysis, we divide Eq. (23) by
1 4+ ¢, and introduce the effective gravitational coupling
defined as G = Gy/(1 + ¢), where G is the standard
general relativistic gravitational constant. Hence, we can
introduce the effective gravitational coupling denoted as
k% = 871G/ c*. By taking into account the mathematical
identity
|

PHYSICAL REVIEW D 95, 044031 (2017)

3¢/2 d ¢ 2
" 3/4 2 3/4 1/4 28
¢ = gy =¢ ar gl 4¢ r2¢ ., (28)
and by denoting ¢ = ¢® — 1 and G = Gye™®, so that

@'/ (1 + ¢) = @', one arrives at the following relations
¢// 3¢/2 1 1 4 3 cD/Z + q)// — f(q))
1+¢ ¢ ip| 4 1-¢® ’

V(g) = (1+PU®) = PU®).  (29)

Equation (23) can be written as

Kiepctrr —Ur? /2
1 +@'r/2

d _, rf(®)+30'/2 . 1-
—ret=—"—"—"——"—vye
dr 14+®r/2

(30)
By representing the metric tensor coefficient e~ as

2Gomegr(r)

e, (31)

et =1-

it follows that the effective mass meg(r) satisfies the
differential equation

dmeg; rf(®) + 3d'/2 Anr? o U
= =— 2—+— o 2 pc|, 32
dr R S e o e B A (32)
with the general solution given by
4r rr f(®(r)) + 3P/ (r)/2 r P (D)) +30'(r) /2
—_ — d / d /!
Mere(r) K>c? xp [ A 1+ (r)r)2 " A xp /) 1+ (7)")2 "
r? 20/(r)  U(D(r))
(7 2 /N 2 d /, 33
T +(I>’(r’)r’/2][ g T TS E k(e dr (33)
where we have used the transformation ¢?/2G, = 4x/x’>c*. Equivalently, Eq. (32) can be written as
dm
76“ = Anpegr?, (34)
where we have introduced the effective density of the star, defined as
rf(®)+3d'/2 1 ®  U(D)
SR Vel Bl S [ DS T S 2 hc? 35
Pt = gl v o) e g P Tz TS (@) R (35)
Equation (24) can be solved for v/ to give
g (KPpe=® —U/2)r* — (1 = 2Gomeg/?r){1 + r[2 + rh(®)|®'} + 1 (36)

r(1 =2Gomeg/c?r)(1 + @'r/2)

where we have defined
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(37)

Then, with the use of the energy-momentum conservation equation (27), we obtain the generalized Tolman-
Oppenheimer-Volkoff equation, describing the hydrostatic equilibrium of compact astrophysical objects in hybrid

metric-Palatini gravity as

dp _ _(pe? + p){(pe™® = U/2)r? = (1 = 2Gymes/*r){1 + r[2 + ri(®)|P'} + 1}

= 38
dr r(1 = 2Gomeg/c?r)(2 + @'r) (38)
Finally, in the new scalar field variable, the Klein-Gordon equation (26) takes the form
12—¢® ! 2 G, 4 3 ®_1 dU(®
—(I)”—f—— - € q)/z_q)/ _ 2p ___20 . TPeft T ’neff2 € . U(@) _ ( )_KgffT :0’
2% -1 pcc+p 1t ri(1=2Gomeg/c?r)|  3(1=2Gomeg/cr) d®
(39)

where we have used the following relations

2G, 1 d
=20 () @
and
v d B dU(®)
%_%[U(l+¢)]—U(Cb)+ o (41)

The system of Eqs. (32), (38) and (26) must be solved,
after specifying an equation of state for the matter inside the
star, p = p(p), with the boundary conditions m.g(0) = 0,
p0) = p. ®(0) = B, P'(0) = B(0), and p(R) = 0,
respectively, where p,. is the central density, and R is the
radius of the star, respectively. However, due to the singular
nature of the center of the star, corresponding to the point
r = 0, when numerically integrating the gravitational field
equations one must impose the initial conditions at a small
but nonzero radius r =ry [58], so that mg(rg) =0,
p(rg) = p. etc. On the other hand, we must determine
the initial values of the radial derivatives of @ at the center,
@'(ry), so that they are consistent with a regular Taylor
expansions at the origin, which can be given, for example,
as [58]

®(r) = ®(0) + é r?A®(0) + O(r), (42)

where A®(0) = ®(r) — ®(0). This series expansion deter-
mines the derivative of the scalar field as

lim @/ (r) z%rOAd)(O). (43)

r—=ry

Near the origin, we can represent the effective mass as
Me(r) ~4nrip./3. By taking into account the limits

lim,_,, ®?(r) =0, lim,_, p'(r) =0, lim,_, me/r =0,
lim,_, mey/r* =0, as well as the relation @”(r) =
AD(0), from Eq. (39), we obtain

e® -1 dU(®)
AD(0) = Udy) ———
© =5 v -
8
P e 3] @)

giving for the central value of the derivative of the scalar
field the expression

e® —1 dU(®)
lim®'(r) = Dy) — ——
@) =—g—r [U( T
87G
+—ﬂ4 e‘q’ﬂ(pcc2—3pc)]. (45)
C

B. Dimensionless form of the mass continuity,
Tolman-Oppenheimer-Volkoff and
Klein-Gordon equations

In the following we introduce a set of dimensionless
variables (1,0, M, P, u), defined as

r=an, p=pl, meg=MM., P:PCCZR u=a*U,

(46)

where
o & 7@6‘27 C3 47
SV TG g

In the new variables Egs. (26), (32) and (38) take the
following dimensionless form:
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dMy — nf(®@(n)) + (3/2)(d®/dn) n* 2d® u _

d " ta(dejdnz A () /2] [11 dy g (@) ¥ oe ﬂ’ “8)
dP _ (0 + P){(Pe™® —u/2)n* = (1 = 2Me/n){1 + n[2 + nh(P(n))|(dP/dn)} + 1} (49)
dn n(1 = 2Meg/n)[2 4 n(d®/dn)) ’

PO 1-¢®/2 (dD\2 dO[ dP/dn 2 pe(m)n’/2 — My
a1 <d_n) Cdn | 0+P T (1 -2M/n) ]
(ecb — 1) dbt(‘b) _ .
T30 = M /) { {”( T ] meto+ 3P)} -0 G0)
respectively, where
__ nf(@(n)) +3(d®/dy)/2 1 2de  u(®) _
Pesc() = =2 1+ n(do/dy)/2) " " + n(d®/dn)/2 [’7 a2 (@) + e ﬂ' 5D

The system of Eqgs. (48)—(50) must be integrated with the boundary conditions M (0) = 0, 6(0) = 1, ®(0) = @,
(d®/dn)l,—o = @), respectively, once the equation of state of the matter P = P(6) has been chosen. As for the numerical
value of the derivative of the scalar field at the center of the star, it can be obtained in a dimensionless form as

e — 1

lim® () =
n—="no

"o [”(q)o) -

where P, is the value of the dimensionless pressure P at the center of the star.

We consider specific numerical solutions describing the
structure of the stars in hybrid metric-Palatini gravity for a
given equation of state of dense matter in the next section.

IV. STRUCTURE OF HIGH DENSITY COMPACT
OBJECTS IN HYBRID METRIC-PALATINI
GRAVITY

In the present section, we investigate the properties of high
density stars in the hybrid metric-Palatini theory without
imposing any restrictions on the functional form of the scalar
field @. In the next section, we investigate the field equations
under the assumption that the scalar field @ has a specific
mathematical form, which is not determined dynamically by
the field equations. In this latter case, after imposing the
functional form of ¢, one can obtain from the field equations
either the form of the equation of state of the matter or the
dynamical behavior of the scalar field potential associated to
the a priori given form of the scalar field.

As for the equation of state of the matter, we consider four
cases, corresponding to the stiff fluid equation of state, with
P = 0, the radiation fluid equation of state with P = 6/3, the
quark matter equation of state P = (6 — 4b) /3, respectively,
and to the Bose-Einstein condensate superfluid neutron
matter equation of state P o« 62, respectively.

In the following, we assume for all cases that the
potential U(®) is of the Higgs type

du(®) _o,
D |y o, +e®o(1 - 3Pc)], (52)
|
U(®) = —";qﬂ + §<D4, (53)

where y? and & are constants. We also assume that similarly
to the standard case, the constant > < 0 is related to the
mass of the hybrid metric-Palatini scalar particle by
the relation m3, = 2&v> = =242, where v> = —p? /¢ gives
the minimum of the potential. For the case of strong
interactions, the Higgs self-coupling constant A~ 1/8
[59], which is a value inferred on the determination of
the mass of the Higgs boson from accelerator experiments.
The dimensionless form u(®) of the potential is given by

2
u(®) :—%®2+§4—0®4,

(54)
where p3 = a*y?, and &, = a*&, with a* given by Eq. (47).
It is important to note that in the dimensionless represen-
tation of the potential the coefficients ,u% and &, are
functions of the central density of the star.

In all cases, we compare our results with the standard
general relativistic spherically symmetric stellar models,
described by the structure equations [60]

d
an_ dzpr?,

dr (55)
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dp(r) __(Go/?)lp(r)e® + p(r)][(4n/c)p(r)r* +m(r)]
dr r2(1=2Gym(r)/c?r) ’

(56)

In the dimensionless variables introduced in Egs. (46), the
general relativistic structure equations take the dimension-
less form

Penlt) _ ppgen(o) (57)
dPcr(n) _ _ [Oor(n) + Par()][Par (m)1’ + Mcr (n)]
dn (1= 2Mcr(n)/n) ’

(58)

respectively, which after imposing an equation of state
P = P(0) must be integrated with the boundary conditions
O6r(0) = 1 and Ogg (1) = 0, respectively.

A. Explicit form of f(R)

Before proceeding with the analysis with the general
relativistic spherically symmetric stellar models, it is
interesting to arrive at a specific form for the f(R), by
taking into account the potential (53). Now, using Eq. (10),
one arrives at

_dv($)

« {l—ln(1+¢) L%ln(l+¢) <iln(1+¢)+l> —%] }
(59)

Using this result, one cannot solve Eq. (7) to provide the
exact explicit form for f(R). However, by performing a
series expansion of Eq. (59) around the point ¢» = 0 [which
is compatible with the analysis leading to Egs. (20)
and (21)], we obtain

2
R =—p*p+ <’% + cf) P - 25—4 (u* + 6E)g* + 0(9°).

(60)
Similarly, for the potential V(¢) (29), we obtain
_ w1 4 5

v =S ()t o). (o)

In the first order of approximation, V(¢) ~ —u’¢?*/2, and
the Clairaut equation (7) becomes

_%[ "(E)]> = Ef'(E) - f(E). (62)

PHYSICAL REVIEW D 95, 044031 (2017)

(recall E =R) which yields the general solution

2
c
F(B) = e+ Ly, (63)
where ¢ is an arbitrary constant of integration. In the next
order of approximation we obtain for f(E) the Clairaut type
equation

PR + g 2 + 62 (E)F = Ef(E) — F(E).
(64)

with the general solution

2 2
1 =ce+de-y (e @

where c¢; is an arbitrary integration constant.

By iteratively continuing this process, we arrive at the
conclusion that for the adopted functional form of the
potential we generally have

f(E) = c1E + cy(cp p. &), (66)

where the constant ¢; must be determined from some
appropriate physical requirements or initial/boundary con-
ditions. It is interesting to note that this solution corre-
sponds to a solution f(R)="R with an effective
cosmological constant given by ¢, (cy, u, &).

On the other hand, in the present approach the numerical
values of the constant ¢, which is essentially generated by
the existence of the coupling, are dependent on the
parameters (u, &) of the adopted Higgs type potential. In
order to study the effects of the coupling on the stellar
structure, we vary the values of the potential parameters in
our numerical investigations. For each investigated stellar
structure (corresponding to a specific equation of state of
the dense matter), we also present the standard general
relativistic result, which is obtained by suppressing the
coupling by taking the limits 4 — 0 and £ — 0. Hence, our
investigations can provide a clear picture of the effects of
the variation of the gravitational couplings on the structure
of high density compact astrophysical objects.

B. Stiff fluid stars

The equation of state P = 0 is called the stiff (Zeldovich)
equation of state, and it gives the upper limit for the
equation of state of a hot nucleonic gas. It is believed that
matter actually behaves in this manner at densities above
about ten times the nuclear density, that is, at densities
greater than 10'7 g/cm?, and at temperatures
T = (p/o)"/* > 1013 K, where ¢ is the radiation constant
[60]. For this equation of state, the speed of sound is
c2 = OP/06 = 1, so that the speed of matter perturbations
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FIG. 1. Mass-radius relation for stiff fluid stars in hybrid metric-
Palatini gravity theory, foryu = 107> cm™!, £ = 8.5 x 10710 cm™2,
@'(0) = —1.8 x 107! t0 —5.7 x 107'® cm™" for the central den-
sities considered, and for different values of ®(0): ® = 0 (standard
general relativistic limit) (solid curve), @(0) = 0.14 (dotted curve),
®(0) = 0.22 (short dashed curve), ®(0) = 0.28 (dashed curve),
and ®(0) = 0.30 (long dashed curve).

cannot exceed the speed of light. The stiff matter equation
of state plays an important role in astrophysics. By using
the spherically symmetric static Einstein field equations,
the principle of causality, and Le Chatelier’s principle, it
was shown in [61] that the maximum mass of the
equilibrium configuration of a high density neutron star
cannot exceed the upper limit of 3.2 M. To obtain this
fundamental result, it was assumed that for high densities
the equation of state of the neutron matter is the stiff fluid
equation of state p = pc’. The numerical value of the

PHYSICAL REVIEW D 95, 044031 (2017)

absolute maximum mass of a neutron star represents a
fundamental method for distinguishing observationally
neutron or other compact stars from black holes.

The mass-radius relations for stiff fluid stars in both
standard general relativity and hybrid metric Palatini
gravity theory are represented in Fig. 1.

The properties of this class of stars have been obtained
by numerically integrating the star structure Eqgs. (32), (38)
and (39) for the stiff fluid equation of state. In order to
obtain the plots we have chosen for the coefficients y and &
in the Higgs potential the values g = 10~ cm~! and
& =28.5x 10719 cm™2, respectively. Then, we have varied
the central values of the scalar field ®(0), thus generating
several sequences of stable stiff fluid stellar models. The
derivative of the scalar field @' at the center of the star was
calculated to be between ®'(0) = —1.8 x 107'® cm™! and
®'(0) = —5.7 x 1071 cm™! in the central density interval
considered. In order to compare the structure of the stars in
hybrid metric-Palatini gravity and standard general rela-
tivity, we also present the mass-radius relation for stiff fluid
stars, obtained as the solutions of the general relativistic
mass continuity and TOV equations (55) and (56),
respectively.

The central density was modified between the values
3.1 x 10" and 2.9 x 10" g/cm? for the hybrid metric-
Palatini gravity stars, with @ # 0, and in the range 3.1 x 10'#
and 2.2 x 10" g/cm? for the standard general relativistic
model. The maximum masses for these stellar sequences are
M .x = 3.278 M, (corresponding to the standard general
relativistic maximum mass value [61]), M., = 3.454 M,
M 12x=3.603M o, M ,,,x=3.811 M and M, =3.968 M,
respectively.

0.00
~0.05[
5 010}

~0.15[

—0.20L

FIG. 2. Variation of the dimensionless scalar field ® (left) and of the Higgs type potential u (right) for a stiff fluid star in the hybrid
metric-Palatini gravity theory for ®(0) = 0.73, and for different values of the potential parameters u and &, and of the central values of
the derivatives of the scalar field: uy = 1.05, & = 1.15, (d®/dny)l,_o =—1.32x 10~* (solid curve), po =2.05, & = 1.25,

(d®/dn)l|,—o = =3 x 107* (dotted curve), uy = 3.05, & = 1.35, (d®/d)l|,_o = =5.79 x 107* (short dashed curve), uo = 4.05,
& = 1.45,(d®/dp)|,—o = —9.68 x 10~ (dashed curve), and yy = 5.05, & = 1.55, (d®/dn)|,_o = —1.47 x 107 (long dashed curve).
The initial conditions for the central density and dimensionless mass used to numerically integrate the hybrid metric-Palatini gravity

structure equations are §(0) = 1 and M.4(0) = 0, respectively.
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The variations of the scalar field ® and of the dimen-
sionless Higgs type potential of the scalar field are
represented in Fig. 2.

To obtain the variation of the dimensionless potential, we
have numerically integrated the dimensionless star struc-
ture equations (48)—(50) for the stiff fluid equation of state,
with the use of the initial conditions 6(0) =1,
M:(0) =0, ®(0) =0.73, and for different values of
the potential parameters p, and &,, which generate
a set of different central values of the derivative of the
scalar field, (d®/dn)|,—y = —1.32 x 107*, (d®/dn)]|,_o=
-3x1074, (d®/dn)|,_o=-5.79x 1074, (d®/dn)l,_o=
—9.68x 107, (d®/dn)|,_y = —1.47 x 1073, respectively.
The scalar field ®, shown in Fig. 2, is a monotonically
decreasing function, reaching the zero value at the surface,
a property which is independent on the chosen numerical
values of p and £. As one can see from Fig. 2, for the
adopted numerical values of the parameters y, and &, the
Higgs type potential of the scalar field takes negative values
inside the star, and it reaches the zero value on the star
surface. In order to obtain some definite numerical results,
we have stopped the numerical integration when the
energy density (pressure) at the star’s surface reached
the value P(ng) = 0.003.

As one can see, stiff fluid hybrid metric-Palatini stars
are much more massive than their general relativistic
counterparts. However, an increase in the central density
to p. = 10'® g/cm? will decrease the mass of the star to
M = 4.24 M, while a central density of p. = 107 g/cm?
gives a mass of the hybrid metric-Palatini gravity star of the
order of M = 1.34 M, only.

C. Radiation fluid stars

The radiation fluid is described by the equation of state
P = @/3. The possibility that stars obeying the radiation
equation of state, and therefore made of photons, could
exist, has already been investigated in the literature.
Numerical solutions of Einstein’s field equation describing
static, spherically symmetric stars made of a photon gas
were obtained in [62]. On the other hand, it was pointed out
in [63] that a class of stellar objects called “Radiation
Pressure Supported Stars” (RPSS) can exist even in the
framework of classical Newtonian gravity. Their general-
izations to standard general relativity are denoted
“Relativistic ~ Radiation Pressure Supported Stars”
(RRPSS). It was suggested in [64] that the formation of
RRPSSs could take place during the gravitational collapse
of massive matter clouds, which may end in a very high
density phase. Independently of the details of the contrac-
tion process, the trapped radiation flux always reaches the
Eddington luminosity at sufficiently large cosmological
redshifts z > 1.

We have obtained the properties of the radiation fluid
stars in hybrid metric-Palatini gravity by numerically

PHYSICAL REVIEW D 95, 044031 (2017)

integrating the star structure equations Egs. (32), (38)
and (39) and (48)—(50), respectively, for the equation of
state P = pc?/3 (dimensionless form P = 6/3). We have
used the same values for the parameters of the Higgs
potential as in the case of the stiff fluid star. In order to
compare the structure of the stars in hybrid metric-Palatini
gravity and standard GR, we have also presented the
corresponding solution of the general relativistic mass
continuity and TOV equations (57) and (58), respectively.

To obtain the mass-radius relation we have used the same
initial values for the scalar field and its derivative as in the stiff
fluid case, and we have varied the central value ®(0) of the
scalar field. The derivative of the scalar field @ at the
center of the star was calculated to be between @'(0) =
—2.7 x 1077 and ®'(0) = —1.1 x 1076 cm™! for the ®(0)
values considered. We have stopped the integration when the
density reaches the surface value p = 2 x 10'* g/cm?®. The
mass-radius relations for standard general relativistic and
hybrid metric-Palatini gravity theory stars are presented in
Fig. 3. The central density goes between 3.1 x 10'* and
2.95 x 10" g/cm? for all curves. For the adopted set of
initial conditions and scalar field potential parameters,
the maximum obtained masses are M., = 2.027 M,
M ax=2.088 Mo, Mo = 2.170 M, Mo = 2.281 M,
and M = 2.442 M.

The variations of the scalar field ® and of the Higgs type
potential of the scalar field for the radiation fluid star are
represented in Fig. 4. The curves have been obtained by
numerically integrating the set of the dimensionless equa-
tions (48)-(50) by using the initial conditions 8(0) = 1,

M(0) = 0, @(0) = 0.43, and where (d®/dn)|,_, is a
25 —r T T T T [ T T T °r [ T T T T [ T T T T [ T T T ]
20t 1

|

g |

5 151 4

S L
1.0+ 1

IR B L N P N
10 11 12 13 14 15
R (km)
FIG. 3. Mass-radius relation for radiation fluid stars in hybrid

metric-Palatini  gravity theory, for u =107 cm™!, &=
8.5 x 10719 cm™2 and for different values of ®(0) and ®'(0):
® =0 @ =0 (standard general relativistic limit) (solid curve),
®(0) =0.10, @' (0) =-2.71 x 1077 cm™! (dotted curve),
®(0) =0.15, @'(0) =—-1.01 x 107" cm™' (short dashed
curve), ®(0) =020, @'(0) =-2.0x 107! cm™! (dashed
curve), and ®(0) =0.25, ®'(0) = -2.8 x 1071 cm™! (long
dashed curve).
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FIG. 4. Variation of the dimensionless scalar field @ (left) and of the Higgs type potential u (right) for a radiation fluid star in the
hybrid metric-Palatini gravity theory for different values of the potential parameters x and &: u = 1.05, £ = 1.15 (solid curve), u = 2.05,
& = 1.25 (dotted curve), y = 3.05, & = 1.35 (short dashed curve), u = 4.05, £ = 1.45 (dashed curve), and y = 5.05, £ = 1.55 (long
dashed curve). The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are 8(0) = 1,
M.(0) =0, ®(0) = 0.43, while central values of the derivative of the scalar field, corresponding to the different values of the
potential parameters p, and & are (d®/dn)|,_o =—1.73 x 107 (solid curve), (d®/dn)|,_o=—7.93x 107 (dotted curve),

(d®/dn)l,—o = —1.81 x 10~* (short dashed curve), (d®/dn)|,_, = —3.24 x 10~* (dashed curve), and (d®/dn)|,_y = =5.07 x 107*

(long dashed curve).

function depending on ®(0), the potential parameters, and
the numerical values of the dimensionless central pressure.
The global structure of the radiation fluid stars in both
standard GR and hybrid metric-Palatini gravity is similar to
the stiff fluid stars. The scalar field, presented in Fig. 4, is a
decreasing function of #, reaching the value zero on the star
surface. The scalar field potential has negative values inside
the star, and it vanishes on the surface. The radiation fluid
stars are less massive in both standard GR and hybrid
metric-Palatini gravity as compared to the stiff fluid stars.
Still, radiation fluid hybrid metric-Palatini stars are much
more massive than their general relativistic counterparts.

D. Quark stars

There are a large number of theoretical arguments
suggesting that the strange quark matter, consisting of u,
d and s quarks, is the most energetically favorable state of
baryon matter [65]. There are two ways for the formation of
the strange matter: either the quark-hadron phase transition
in the early Universe, or, alternatively, the conversion of
neutron matter into strange matter inside neutron stars at
ultrahigh densities. The possibility of the existence of stars
made of quark matter was proposed in [66,67]. From a
theoretical point of view, the equation of state of the quark
matter can be derived from the fundamental Lagrangian of
the quantum chromodynamics (QCD) [68]. An important
prediction of QCD is the weakening of the quark-quark
interaction at short distances, due to the asymptotic free-
dom of the theory.

The energy density p and the pressure p of a quark-gluon
plasma at temperature 7" and chemical potential u, can be
calculated, by assuming that the interactions of quarks and

gluons are sufficiently small, by using thermal theory. In
first order perturbation theory, after neglecting quark
masses, the equation of state of quark matter is given
by P = Zi:u.d,s,c;e’,ﬂ’pi + B? P + B = Zi:u.d,s,c;e’,;fpi’
[65,69], where B, the bag constant, is defined as the
difference between the energy density of the perturbative
and nonperturbative quantum chromodynamical vacuum.
Therefore, the equation of state for quark matter is given by
the Massachusetts Institute of Technology (MIT) bag
model equation of state [65,69]

1
P=3 (pc? — 4Bc?). (67)

The equation of state (67) represents the equation of state
of a gas of massless particles with corrections due to the
trace anomaly of quantum chromodynamics, and due to the
inclusion of perturbative interactions. These corrections are
always negative, and they reduce the energy density of the
quark-gluon plasma at a given temperature by about a
factor two when the strong interaction coupling constant is
of the order of a; = 0.5 [68]. In the dimensionless variables
introduced in Eq. (46), the MIT bag model equation of state
becomes

1

P=—(0-4b), (68)

W

where b = B/p,.

In order to obtain the properties of the quark stars in the
hybrid metric-Palatini gravity theory, we numerically
integrate the star’s structure equations (32), (38)
and (39), and (48)—(50), respectively, by using the MIT
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FIG. 5. Mass-radius relation for quark stars in hybrid metric-
Palatini gravity theory, fory = 1075 cm™!, £ = 8.5 x 1071 cm™2,
and for different values of ®(0) and ®'(0): ®=0, & =0
(standard general relativistic limit) (solid curve), ®(0) = 0.13,
@'(0)=-14x10""% cm™ (dotted curve), @(0)=0.16,
(I)/(O) —2.0 x 10716 cm™! (short dashed curve), ®(0) = 0.19,

®'(0) = —2.5 x 107'® cm™! (dashed curve), and ®(0) = 0.22,
@'(0) = —2.9 x 107 cm™! (long dashed curve).

bag model equation of state (67). We have adopted the
same values for the parameters of the Higgs potential as in
the case of the stiff and radiation fluid stars, respectively. In
order to compare the structure of the quark stars in hybrid
metric-Palatini gravity and standard GR, we have also
presented the corresponding solution of the general rela-
tivistic mass continuity and TOV equations (57) and (58).
In all cases integration stops at P = 0. The mass-radius
relations for the quark stars in both standard general
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relativity and hybrid metric-Palatini gravity are shown in
Fig. 5. For the bag constant we have adopted the value
B =10 g/cm?. The central density goes between
4.1 x 10" and 3.2 x 10'® g/cm?, respectively. The maxi-
mum masses of the quark stars for the chosen values of
the parameters of the potential and initial conditions for
the scalar field are M., = 2.025 M, M, = 2.296 M,
My =2396 Mo, M =2.545 My, and M, =
2.706 M, respectively.

To integrate the dimensionless field equations, we have
adopted the initial conditions 8(0) = 1, M.(0) = 0 and
®(0) = 0.47, and where (d®/dn)|,_ is a function depend-
ing on @ (7). We have fixed the value of the bag constant as
b = 0.047. The variations with respect to the dimensionless
radial coordinate # of the scalar field and of the Higgs type
potential of the scalar field inside the quark star are
presented in Fig. 6.

The scalar field inside the star, presented in the left plot
of Fig. 6, is a decreasing function of . However, in the case
of the quark stars the scalar field does not vanish on the
star’s surface for most of the adopted values of the
parameters of the Higgs potential. On the other hand,
similarly to the previous cases, the scalar field potential has
negative values inside the star, but generally it does not
vanish on the surface. For the adopted range of the physical
parameters, the quark stars are less massive in both standard
GR and hybrid metric-Palatini gravity, as compared to the
stiff and radiation fluid stars. However, quark hybrid
metric-Palatini stars are again much more massive than
their general relativistic counterparts. On the other hand,
the global structure of the quark stars in both standard
GR and hybrid metric-Palatini gravity show significant

FIG. 6. Variation of the dimensionless scalar field @ (left) and of the Higgs type potential u (right) for a quark star in the hybrid metric-
Palatini gravity theory for different values of the potential parameters y and &: u = 1.05, £ = 1.15 (solid curve), 4 = 2.05, £ = 1.25
(dotted curve), p = 3.05, £ = 1.35 (short dashed curve), u = 4.05, £ = 1.45 (dashed curve), and p = 5.05, £ = 1.55 (long dashed
curve). The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are 6(0) =1,
M (0) = 0, ®(0) = 0.43, while the central values of the derivatives of the scalar field, corresponding to different values of the potential
parameters y, and &, are (d®/dn)l,_y = —1.26 x 107 (solid curve), (d®/dn)|,—_o = —7.47 x 107 (dotted curve), (d®/dn)|,_, =
—1.77 x 107 (short dashed curve), (d®/ dn)l,—o = —3.19 x 10 (dashed curve), and (d®/ dn)l,—o = —5.026 x 10~* (long dashed
curve). For the bag constant b, we have adopted the value b = 0.047.
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differences as compared to the stiff and radiation fluid stars,
respectively.

E. Bose-Einstein Condensate stars

Due to the superfluid properties of the neutron matter,
some compact astrophysical objects may have a significant
part of their matter content in the form of a Bose-Einstein
condensate [64,70]. The nonrelativistic and Newtonian
Bose-Einstein gravitational condensate can be described
as a gas, whose density and pressure are related by a
barotropic equation of state p = p(p). Generally, the
equation of state of the condensate depends on two physical
parameters, the mass of the condensate particle m,. and the
scattering length a [71]. In the case of a condensate with
quartic nonlinearity, the equation of state is polytropic with
index n =1 [70,71],

p(p) = Kp?, (69)

with

2xh’a a m,. \ 3
K = =0.1856 x 10° | —— d , 70
= <0 (7 (Ge) o

where m, = 1.6749 x 107>* g is the mass of the neutron.
Compact high density stellar objects having superfluid
cores with particles forming Cooper pairs having masses of
the order of two neutron masses, and scattering length of
the order of 10-20 fm, respectively, can have maximum
masses of the order of 2 M, maximum central density of
the order of 0.1 — 0.3 x 10'® g/cm?, and minimum radii in
the range of 10-20 km [70]. In the dimensionless variables
introduced in Eq. (46) the equation of state (69) takes the
dimensionless form

P(6) = ke?, (71)

where k = Kp_./c?.

The global properties of the Bose-Einstein condensate
stars in the hybrid metric-Palatini gravity theory have been
obtained by numerically integrating the star’s structure
equations (32), (38) and (39), and (48)—(50), respectively,
for the index n = 1 polytropic equation of state. We have
adopted the same values for the parameters y and & of the
Higgs potential as in the case of the stiff, radiation fluid and
quark stars, respectively. For the mass of the condensate
particle, we have adopted the value m,. = m,. In each
case the numerical integration stops at p = p./60. The
central density varies in the range 2.1 x 10"® and
6.43 x 10" g/cm?® for all cases. In order to compare the
global structure of the Boae-Einstein condensate stars in
both hybrid metric-Palatini gravity and general relativity,
we have also obtained, and presented, the corresponding
numerical solution of the standard general relativistic
structure equations (57) and (58). The comparative mass-
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radius relations for Bose-Einstein condensate stars in
general relativity and hybrid metric-Palatini gravity are
presented in Fig. 7.

The maximum masses obtained for the considered
range of parameters are M, =2.003 Mo, M . =
2070 Mg, My =2.115 Mo, M =2.167 M, and
M . = 2.231 M, respectively.

In order to integrate the dimensionless set of structure
equations for the Bose-Finstein condensate stars, we have
adopted the initial conditions 6(0) =1, M. (0) =0,
®(0) = 0.27, and where (d®/dn)|,_, is a function depend-
ing on ®(0), the potential parameters and the central
pressure. We have fixed the value of the coefficient k in
the polytropic equation of state as k = 0.10, The variations
with respect to the dimensionless radial coordinate 7 of the
scalar field @ and of the Higgs type potential of the scalar
field for Bose-Einstein condensate stars are depicted
in Fig. 8.

The matter pressure (or, equivalently, the energy density)
vanishes on the star’s surface, which gives the condition
O(ns) =0, for the determination of the dimensionless
radius of the star 5. The scalar field inside the star,
presented in Fig. 8, has a complex behavior, strongly
dependent on the parameters of the Higgs potential. For the
first set of numerical parameters, ® is an increasing
function inside the star, while for the next parameter values
it is a decreasing function of #. Similarly to the case of the
quark stars, inside the Bose-Finstein condensate stars
the scalar field does not vanish on the star’s surface
for the adopted values of the parameters of the Higgs
potential. The scalar field potential presents also a complex
evolution pattern, with negative values inside the star,
and an increasing/decreasing behavior determined by the

R (km)

FIG.7. Mass-radius relation for Bose-Einstein condensate stars
in hybrid metric-Palatini gravity theory, for g = 107 cm™!,
£=85x10"""cm™2, @(0)=-18x10"" to -57x
10716 cm™! for the range of the considered central densities,
and for different values of ®(0): ® =0 (standard general
relativistic limit) (solid curve), ®(0) = 0.05 (dotted curve),
®(0) = 0.08 (short dashed curve), ®(0) = 0.11 (dashed curve),
and ®(0) = 0.14 (long dashed curve).
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Variation of the dimensionless scalar field @ (left) and of the Higgs type potential u (right) for a Bose-Einstein condensate star

in the hybrid metric-Palatini gravity theory for different values of the potential parameters y and &: p = 1.05, £ = 1.15 (solid curve),
u = 2.05,¢& = 1.25 (dotted curve), u = 3.05, £ = 1.35 (short dashed curve), u = 4.05, £ = 1.45 (dashed curve), and u = 5.05, & = 1.55
(long dashed curve). The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are
0(0) = 1, M(0) = 0, ®(0) = 0.27, while the central values of the derivative of the potential, corresponding to different values of
the potential parameters yo and &, are (d®/dn)l,_o = 1.02 x 1073 (solid curve), (d®/dn)l,—o = —1.46 x 10~ (dotted curve),
(d®/dn)|,—o = =5.55 x 107 (short dashed curve), (d®/dp)l,_y = —1.12 x 10~* (dashed curve), and (d®/dp)|,_y = —1.85 x 107*
(long dashed curve). For the coefficient k in the polytropic equation of state, we have adopted the value k = 0.1.

numerical values of the parameters y and £. For the
considered range of parameter values the scalar field
potential does not vanish on the surface.

For the adopted range of the physical parameters of the
Higgs type potential, the Bose-Einstein condensate stars are
less massive in both standard GR and hybrid metric-
Palatini gravity, as compared to the stiff, radiation fluid
and quark stars, respectively. However, similarly to all
previous cases, Bose-Einstein condensate hybrid metric-
Palatini stars are more massive than their general relativistic
analogues, but the difference is significantly reduced.
Hence, the global structure of the Bose-Einstein condensate
stars in both standard GR and hybrid metric-Palatini gravity
show again significant differences with respect to the stiff
and radiation fluid stars, as well as with the quark stars.

V. STELLAR MODELS WITH FIXED
FUNCTIONAL FORMS OF THE SCALAR FIELD

As a first example of a stellar model in hybrid metric-
Palatini gravity in which the form of the scalar field is
initially given, we consider the case in which the scalar
field @ satisfies the differential equation

f(®(n) = lequ;%—% <1 +$) <Lji—(’l7)>2 =0. (72)

Equation (72) has two solutions, given by
® = @, = constant (73)

and

® =1In[l + (an + p)4, (74)
respectively, where

E‘DO

1
“aem oA P (e® =14, (75)

a

and @, = @(0), @) = (d®/dn)|,_o. In the following we
consider these two functional forms of ®, and we inves-
tigate the physical and geometrical properties of the
corresponding stellar models.

A. Effective quark star models-the case @ =constant

In the case ® = constant the generalized dimensionless
Klein-Gordon equation Eq. (50) reduces to the following
relation between the matter density and thermodynamic
pressure:

P :%(9-419@), (76)
where
Y _du(<I))
—4By = e [ (D) 26 ] oo (77)

Interestingly enough, the equation of state (76) has the
same form as the MIT bag model equation of state
describing quark matter, where B represents the bag
constant [65]. Hence, in the present approach By can be
interpreted as an effective bag constant, induced by the
hybrid metric-Palatini gravitational theory. In this case the
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mass continuity and the hydrostatic equilibrium equations
become

M 1 g,
et B
=GO B) (78)
ﬁ _ 26—430 (6 B B) (9 B 0’)’72 + 3A4eff/’7 (79)
dn 3n(1 = 2Mg/n) ’

where By = e®ou(®,)/2 and a = 4B4 + By. In the fol-
lowing we consider that the scalar field potential is
of Higgs type, and, moreover, we assume that for a stable
configuration, the scalar field is in a potential mini-
mum, so that dV(¢)/dep|,_, =0, giving ¢y = £p/\/&
and V(¢hg) = —u* /4¢.

Hence, e® =1+¢y=1+u/VE and U(®)|,_y =
e~V (e® = 1)| 4y = V/(1+ o) = —(*/46) (1 £ u/VE),
and we obtain By, = a®(u*/4€) = c*u*/32xGyp &, By =
—02(/,{4/25) = _2B(I)’ and 90 = IOB(D

The mass-radius relation of the hybrid metric-Palatini
star with a constant scalar field are presented for different
values of the effective bag constant Bg in Fig. 9. In each
case the integration stops at p = 4 x 10'* g/cm?, so that
the general relativistic quark star described by the MIT bag
model matches the known curve. Central density was
varied between 4.1 x 10'* and 8.5 x 10'5 g/cm?. The
maximum masses obtained for the adopted set of param-
eters are M, = 2.025 Mo, M = 1.608 Mo, Mo =
1.663 My, M. = 1770 M, and M, = 1.632 M,
respectively.

The effective hybrid metric-Palatini quark star model
was compared with the general relativistic quark star
model. The maximum mass of the hybrid metric-Palatini
gravity “analogue” quark star is much lower than the mass

|

dMey _ 24aM o (an +8)° —n[16a(an + B)* + 210 + nu((an + p)* +1)]

PHYSICAL REVIEW D 95, 044031 (2017)
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FIG. 9. Mass-radius relation for hybrid metric-Palatini gravity
stars for a constant scalar field, for u =107 cm™!,
E=285x10"1cm™2, and for different values of ®: ® =0
(standard general relativistic quark star model) (solid curve), ® =
0.35 (dotted curve), ® = 0.4 (short dashed curve), ® = 0.45
(dashed curve), and @ = 0.50 (long dashed curve).

of the ordinary general relativistic quark star, with the
constant scalar field in the minimum of the Higgs potential
not giving a significant contribution to the gravitational
properties of the system. Of course this conclusion is
strongly dependent on the numerical values of the model
parameters. By modifying the numerical values of the
constant scalar field, “analogue” quark star models with
different global properties can be constructed.

B. The case @ = In[1 + (an + )%

By adopting for the scalar field @ the functional form
given by Eq. (74), it follows that the structure equations
describing the interior of a hybrid metric-Palatini gravity
star take the form

an Al(3an + ) + f) 1 1] | (80)
do _ 0{12M[(3an + B)(Tan + B)(an + B)* + 1] + n*[-24a(San + 2p) (an + B)* + 206 — 3nu((an + B)* + 1)]}
dn 3n(n — 2Me) [(3an + B) (an + B)* + 1] ’
(81)
du _4(n=2M.)(an + ) {_120{2 | mulan + B (an + ) + 1] 3a(an + )
dp nl(an+p)* + 1] 1N —2M g n0(n — 2M ) [(3an + ) (an + f)* + 1]
Y {zmz ol = DM a + P + PP + 11+ Olan + B+ 1)(-80 + 12Mor + n3u>}}, (2)

where to describe the dense matter of the star, we have adopted the radiation fluid equation of state P = @/3. In order to
integrate the system of equations (80)—(82), we need to impose the boundary conditions M¢(0) = 0, 0(0) = 1, u(0) = uy,
and 6(ns) = 0, respectively. In the dimensional physical coordinates we represent the scalar field as
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FIG. 10. Mass-radius relation for hybrid metric-Palatini gravity
stars for the scalar field ®(r) =In[l + (Ar+ B)*], for
A =100 cm™!, U(0) = 1073 cm™2, and for different values of
®(0): ®(0) =2.0 (dotted curve), ®(0) =2.1 (short dashed
curve), ®(0) = 2.25 (dashed curve), and ® = 2.3 (long dashed
curve). The solid curve represents the standard general relativistic
radiation fluid star model.

®(r) = In[1 + (Ar + C)4]. (83)

The mass-radius relation for hybrid metric-Palatini
gravity stars with the scalar field given by Eq. (83) is
depicted in Fig. 10. In the numerical computations
we have fixed the value of A as A = 100 cm™', while C
was fixed from the initial condition ®(0) = ®,. The central
density was varied between 0.049 and 0.729. The numeri-
cal values of the maximum masses obtained for this set of
parameters are M., = 2.027 M, (standard general rela-
tivistic model), M = 2.013 Mo, M = 2.206 M,

M =2419M o, M ;(x=2.655M 540, and M, =
2.916M , respectively.
0.15 r——— 1 1 T T T ]
[~ ]
0.10 rh L .
Bl S~eo ~
EL et 1
L) - T T T T T __ 1
005F1 > ~ _ 1
3 [ \\ —~ ~ ]
L ~ ~ ~ 1
0.00 ~_ - _ ~ ]
[ — _ . ]
: T — _— ~ — ~N
-0.05 |- T~ q
L ™~ _
b < - -
~
1 1 " 1 " 1 1 "
0 1 2 3 4
n
FIG. 11.

PHYSICAL REVIEW D 95, 044031 (2017)

The variations with respect to n of the scalar field
potential u, as well as the variation of u with respect to
phi are shown in Fig. 11.

As is transparent from Fig. 10, the hybrid-metric
Palatini stars with the scalar field of the form @ =
In[l + (an + B)*] are more massive than their general
relativistic counterparts. There is a significant effect of
the variation of the scalar field parameters on the effective
mass M of the star. A small variation in the numerical
values of a and f determines an important change in the
mass of the star. The corresponding masses and radii are
also much bigger than those of the general relativistic fluid
stars, with masses of the order of two solar masses. The
behavior of the scalar field potential u, depicted in Fig. 11,
is also strongly dependent on the numerical values of a and
p. For small values of a, the potential is practically constant
inside the star, and it takes only positive values. With the
increase of a, the potential becomes a monotonically
decreasing function of the radial coordinate, also changing
sign inside the star. As a function of @, the potential shows
a similar behavior, becoming a decreasing function taking
negative values outside a small stellar core.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have investigated the global
physical properties of dense compact objects in the hybrid
metric-Palatini gravity, which combines elements of the
metric and Palatini f(R) theories, and attempts to explain
the gravitational phenomena on both local and large scales
through a single formalism. An important feature of the
theory is the possibility of a scalar-tensor type formulation,
which we have used to study the interior of stellar type
objects. However, it is important to stress that the gravi-
tational action of the theory differs fundamentally from the

0.15F T T T T T T T T T T T T T T T T T
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I
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Variation of the scalar field potential u as a function of 5 (left) and of the scalar field potential « as a function of ® (right) for a

hybrid metric-Palatini gravity star with ® = In[1 + (an + f)*], for different values of the parameters @ and : @ = 0.03, # = 0.15 (solid
curve), a = 0.05, = 0.15 (dotted curve), @ = 0.07, f = 0.15 (short dashed curve), a = 0.09, = 0.10 (dashed curve), and a = 0.11,
p = 0.05 (long dashed curve). The dot-dashed curve represents the solution of the structure equations for the radiation fluid star in
standard GR. The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are 6(0) = 1,

M;(0) = 0 and u(0) = 0.15,
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Brans-Dicke type action, due to the coupling between the
scalar field and the geometry. This coupling generates in
static spherically symmetry a rather complicated set of
interior field equations, whose solutions can be found only
through the intensive use of numerical methods. As a first
step in our study, we have derived the basic equations
describing the structure of compact objects in hybrid
metric-Palatini gravity, namely, the mass continuity equa-
tion, the generalized hydrostatic equilibrium equation, and
the generalized Klein-Gordon equation, describing the
coupling of the scalar field with curvature and matter.
An important physical parameter determining the proper-
ties of the stars is the self-interaction potential V of the
equivalent scalar field. In the present study we have
assumed that the potential is of the Higgs type, a choice
which is supported by the role such potentials play in
elementary particle physics. Other functional forms of the
potential (exponential, hyperbolic, power-law etc.) can also
be adopted, and they will lead to compact objects having
different global properties as compared to those analyzed in
this work.

Once the scalar field potential is specified, in order to
close the system of structure equations of the star we need
to specify either the functional form of the scalar field or the
equation of state of the dense matter. In the framework of
the first approach we have investigated two types of
solutions of the field equations. In the first case, we have
assumed that the scalar field is in the minimum of the Higgs
potential and assumes a constant value. Interestingly
enough, this assumption fixes, via the Klein-Gordon
equation, the equation of state of the star’s matter, which
takes the form of the MIT bag model equation of state,
which was extensively used to describe the properties of the
quark stars. From a simple physical point of view, the bag
constant forces the quarks to confine into a spherical
region of space, with a radius, r = a, so that the potential
V(r) = 0 for r < a, with the vacuum pressure B on the bag
wall equilibrating the pressure of quarks and thus stabiliz-
ing the hadron. Several mechanisms have been proposed
for the formation of quark stars. One possible scenario is
that they may form during the collapse of the core of a
massive star after the supernova explosion [64]. Such an
explosion may trigger a first or second order phase
transition, thus leading to the formation of deconfined
quark matter. It has also been pointed out that the core of
proto-neutron or neutron stars is a favorable environment
for the conversion of neutron matter to quark matter [69].
Neutron stars in low-mass X-ray binaries can also accrete
enough cosmic matter to undergo a phase transition to
become quark stars [69]. Hence, the possibility that in
hybrid metric-Palatini gravity a phase transition, triggered
by the scalar field with Higgs type self-interaction poten-
tial, can take place under extreme astrophysical and
gravitational conditions (supernova explosions, gamma-
ray bursts, accretion etc.) cannot be ruled out. If such a
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phase transition does occur, the star ends in a minimum of

the Higgs potential as a “true” or “analogue” quark star.

For a given equation of state of the dense matter, we have
investigated, by numerically integrating the structure equa-
tions of the star, four classes of models, corresponding to
the stiff fluid, radiation fluid, quark matter and Bose-
Einstein condensate superfluid phase, respectively. In all of
these cases we have effectively constructed the hybrid
metric-Palatini gravity model of the star and compared it to
its general relativistic counterpart. Our analysis shows that
for all these four equations of state the hybrid metric-
Palatini gravity stars are much more massive than their
standard general relativistic counterparts. For example, for
the stiff fluid equation of state, hybrid metric-Palatini stars
are about five times heavier than the general relativistic
stars. The same central density quark stars have around two
times bigger masses, while superfluid Bose-Einstein
Condensate stars are around 1.4 four times more massive.
Of course the mass of the star is strongly dependent on its
central density, and high central density stars have lower
gravitational masses. But the large mass spectrum of the
hybrid metric-Palatini stars raises the possibility that stellar
mass black holes, with masses in the range of 3.8 M and
6 M, respectively, could be in fact hybrid metric-Palatini
stars (such a possibility was investigated in [72] for the case
of the quarks stars in the color-flavor locked phase). A
comparison of the maximum masses of stellar objects in the
hybrid-metric Palatini gravity and of the standard general
relativistic values is presented in Table L.

Many stellar mass black hole candidates have been found
recently, with at least seven of them having masses greater
than 5 M. Presently, at least 20 stellar mass black holes
have been detected, with masses between 3.8 and 6 solar
masses. However, astronomical estimations give the total
number of stellar mass black holes (isolated and in binaries)
in our Galaxy only to be of the order of 100 millions (see
[72] and references therein). Therefore the possibility that
stellar mass black holes could be ordinary stars dominated

TABLE 1. Comparison between the maximum general relativ-
istic MSR /M, and hybrid metric-Palatini MNP /M, masses
obtained for the four equations of state considered in the present
study. The parameters of the Higgs type potential used to
numerically integrate the hybrid metric-Palatini structure equa-
tions are p=10"cm™! and £=85x10"""cm™2, and
®(0) = 0.30 cm™'. Here, (d®/dr)|,_, is a function of ®(0),
of the potential parameters and of the central densities and
pressures. For the MIT bag model and BEC equations of state, the
maximum mass occurs at the point of minimum central density.

Equation of state @(0) MSR /M, MIMP /M
MIT bag model 0.30 2.025 4.359
Stiff fluid 0.30 3.279 3.968
Radiation fluid 0.30 2.256 3.660
BEC 0.30 2.230 4971
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by modified gravity effects cannot be ruled out. Hybrid
metric-Palatini stars may have higher masses than standard
neutron stars, and thus, they may be possible stellar mass
black hole candidates. A possibility of distinguishing
hybrid metric-Palatini stars from standard general relativ-
istic stellar mass black holes could be through the study of
the astrophysical properties of the thin accretion disks
around rapidly rotating hybrid metric-Palatini stars and
Kerr type black holes. For such a case, we expect that the
radiation properties of the accretion disks around general
relativistic black holes and modified gravity stars may be
different [73]. Hence, the emission properties of the
accretion disk, and of the stars themselves, may be the
key signature to differentiate modified gravity stars from
ordinary black holes.

High precision observations of the neutron star mass
distribution have also confirmed the existence of neutron
stars with masses of the order of 2 M, [42-44]. One
example of such a star is the Black Widow Pulsar
B1957 4 20, an eclipsing binary millisecond pulsar, with
the mass estimated to be in the range 1.6-2.4 M [74].
However, a range of 2-2.4 solar masses are very difficult
to explain by the standard neutron matter models in the
framework of GR, including exotic models like quark
or kaon stars. However, these stellar mass values could
be easily explained once we model them as hybrid

PHYSICAL REVIEW D 95, 044031 (2017)

metric-Palatini gravity stars. Indeed, a hybrid metric-
Palatini star exhibits a very complex internal structure,
associated with an equally complex stellar dynamics. This
is mainly due to the presence of the coupling between the
scalar field, geometry and matter. These effects can lead to
a number of distinctive astrophysical signatures, which still
can make their observational detection to be an extremely
difficult task. The possible astrophysical/observational
relevance of the hybrid metric-Palatini stars will be con-
sidered in a future publication.
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