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We consider the internal structure and the physical properties of specific classes of neutron, quark and
Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a
combination of the metric and Palatini fðRÞ formalisms. It turns out that the theory is very successful in
accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and
the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the
equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-
Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini
theory, and we investigate their solutions numerically for different equations of state of neutron and quark
matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor
definition of the potential can be represented as an Clairaut differential equation, and provides an explicit
form for fðRÞ given by fðRÞ ∼Rþ Λeff, where Λeff is an effective cosmological constant. Furthermore,
stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate
equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity,
thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general
result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their
general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular
choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also
investigated. Interestingly enough, in the case of a constant scalar field the equation of state of thematter takes
the form of the bagmodel equation of state describing quarkmatter. As a possible astrophysical application of
the obtained results, we suggest that stellar mass black holes, with masses in the range of 3.8 and 6 M⊙,
respectively, could be in fact hybrid metric-Palatini gravity neutron or quark stars.
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I. INTRODUCTION

Despite its remarkable success on relatively small
astronomical scales, such as the Solar System and compact
astrophysical objects, Einstein’s general relativity (GR)
presently faces two deep conceptual crises, related to the
dark energy and the dark matter problem. The dark energy
problem was raised by several high precision astronomical
observations of the distant Type Ia supernovae, which have
provided the unexpected result that in the Universe a
transition to an accelerating, de Sitter type phase has taken
place recently [1–5]. An equally intriguing question is
related to the matter-energy balance of the Universe.
In order to close it according to the cosmological

observations, a second, and equally mysterious component
of the Universe, called dark matter, is necessary. Dark
matter is usually assumed to be a nonbaryonic and non-
relativistic (cold) component of the Universe. Its introduc-
tion is necessary on a fundamental level for explaining the
observed dynamics of the hydrogen clouds rotating around
galaxies, which have flat, nondecaying rotation curves, as
opposed to the expected Keplerian velocities. A second
observation requiring the presence of dark matter is the
virial mass discrepancy in clusters of galaxies [6,7]. Up to
now, no direct detection/observation of the dark matter has
been reported, and presently the only evidence for its
existence is its gravitational interaction with baryonic
matter. Presently, after a long period of intensive observa-
tional and experimental efforts, the particle nature of the
dark matter is still unknown.
Hence, these astronomical observations strongly suggest

that at large scales the force of gravity may not
behave according to standard GR, as derived from the
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Hilbert-Einstein action, S ¼ R ðR=2κ2 þ LmÞ ffiffiffiffiffiffi−gp
d4x,

where R is the Ricci scalar, κ is the gravitational coupling
constant, and Lm is the matter Lagrangian, and that a
generalization of the Hilbert-Einstein action may be
required for a full understanding of the gravitational
interaction. One of the promising ways to extend GR is
related to the modification of the geometric part of the
Hilbert-Einstein Lagrangian. Such an approach was intro-
duced in [8,9] by assuming that the geometric part of the
action is given by an arbitrary function fðRÞ of the Ricci
scalar, so that the total Hilbert-Einstein action can be
written as S ¼ R ðfðRÞ=2κ2 þ LmÞ ffiffiffiffiffiffi−gp

d4x. For in depth
discussions and reviews of modified and fðRÞ type gravity
theories, see [10–18]. The fðRÞ modified theories of
gravity can give a satisfactory explanation to the recent
cosmological observations, and they can also provide a
solution to the dark matter problem, which can be inter-
preted as a geometric effect in the framework of the
theory [19].
It is well known that Einstein’s GR can be derived in two

different theoretical frameworks, the metric and the Palatini
formalisms [20]. Once applied to the Hilbert-Einstein
action, these two approaches lead to the same equations
of motion. However, this is not the case in fðRÞ gravity, and
for other extended theories of gravity, where it turns out that
the field equations obtained using the metric approach are
generically different from their Palatini (or metric-affine)
counterparts [20]. While the metric approach typically
leads to higher-order derivative field equations, in the
Palatini approach the resulting equations of motion are
always second order. However, in the Palatini formulation
certain algebraic relations between the matter fields and the
affine connection appear, with the latter being now deter-
mined by a set of equations coupling it to the matter fields
and the metric. An extension of the fðRÞ gravity theory,
based on a hybrid combination of the metric and Palatini
mathematical formalisms, in which the (purely metric)
Einstein-Hilbert action is supplemented with (metric-
affine) correction terms constructed a la Palatini, was
proposed in [21]. Both the metric and the Palatini fðRÞ
theories allow the formulation of simple extensions of GR
with interesting properties. However, at the same time, they
each suffer from different types of pathologies. Therefore,
establishing a bridge between these two apparently differ-
ent approaches may offer a possibility of eliminating their
individual pathologies. Further generalizations of the fðRÞ
gravity theories involving a geometry-matter coupling were
proposed in [22,23], respectively.
Hence, in [21,24] a hybrid combination of the metric

and Palatini formalisms was used to construct a gravita-
tional Lagrangian. As a main result of this approach, it was
found that viable models containing elements of both
formalisms are possible. An important result of these
theories is the possibility to generate long-range forces
without entering into conflict with the local Solar System

tests of gravity. An important technical result is the
possibility of using a scalar-tensor representation for the
hybrid metric-Palatini theories, which simplifies the analy-
sis of the field equations and the construction of solutions.
An example of such hybrid metric-Palatini theory is the
one based on the gravitational Lagrangian Rþ fðRÞ,
where R is the Palatini scalar curvature. Introducing such
an action means that we maintain all the positive results of
GR at the scale of the Solar System and of compact
objects, which are included in the Einstein-Hilbert part of
the action R, while the metric-affine fðRÞ component adds
novel features that could explain the recent cosmological
observations. A related formalism for the study of fðRÞ
theories that interpolate between the metric and Palatini
regimes, and called C-theory, was proposed in [25,26]. A
generalization of the hybrid metric-Palatini gravity was
proposed in [27].
Much attention has been invested in the hybrid metric-

Palatini gravity. In a cosmological context, the properties of
the Einstein static universe were studied in [28]. The
cosmological applications of metric-Palatini gravity were
explored in [29], and cosmological solutions coming from
the scalar-tensor representation were presented. Criteria to
obtain the late-time cosmic acceleration were discussed,
and the field equations were analyzed as a dynamical
system. Several classes of dynamical cosmological solu-
tions, depending on the functional form of the effective
scalar field potential, describing both accelerating and
decelerating universes were also explicitly obtained. The
evolution of the linear perturbations in the hybrid metric-
Palatini theory was studied in [30], where the full set of
linearized evolution equations for the perturbed potentials
were derived. It turns out that the main deviations from the
ΛCDM model arise in the distant past, with an oscillatory
signature in the ratio between the Newtonian potentials Φ
and Ψ. Two classes of models were studied in [31], where
both models recover GR with an effective cosmological
constant at late times. This occurs because the Palatini
Ricci scalar evolves towards and asymptotically settles at
the minimum of its effective potential during the cosmo-
logical evolution. With the use of a combination of cosmic
microwave background, supernovae and baryonic acoustic
oscillations the free parameters of the models were con-
strained. It is interesting to note that for both models
considered the maximum deviation from the gravitational
constant G is of the order of 1%. The cosmology of the
metric-Palatini theories was also studied using the dynami-
cal system approach in [32] by formulating the propagation
equation as an autonomous system. The analysis resulted in
the standard cosmological fixed points, and new accelerat-
ing solutions were found that can be attractors in the
phase space.
In the context of dark matter, the virial theorem for

galaxy clusters in hybrid metric-Palatini gravity was
derived in [33], where it was shown that the total virial
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mass is proportional to the effective mass associated with
the new terms generated by the effective scalar field and the
baryonic mass. Hence, the geometric terms in the gener-
alized virial theorem may account for the virial mass
discrepancy in clusters of galaxies. Astrophysical applica-
tions of the model were also considered, and it was shown
that the model predicts that the mass associated to the scalar
field and its effects extend beyond the virial radius of the
clusters of galaxies. The possibility that the behavior of the
rotational velocities of test particles gravitating around
galaxies can be explained within the framework of the
hybrid metric-Palatini gravitational theory was investigated
in [34]. The tangential velocity of test particles can be
explicitly obtained as a function of the scalar field of the
equivalent scalar-tensor description. Therefore, all the
physical and geometrical quantities and the numerical
parameters in the hybrid metric-Palatini model can be
expressed in terms of observable/measurable parameters,
such as the tangential velocity, the baryonic mass of the
galaxy, the Doppler frequency shifts, and the stellar
dispersion velocity. Furthermore, the well-formulation
and well-posedness of the Cauchy problem were discussed
for hybrid metric-Palatini gravity in [35]. Wormhole
solutions have also been obtained in the hybrid metric-
Palatini theory [36], where the higher order terms support
theses exotic geometries. For a recent review of hybrid
metric-Palatini gravity, see [37].
Spherical symmetry has played an important role in GR,

since a large class of solutions of Einstein’s gravitational
field equations, describing the interior structure of relativ-
istic compact objects, can be obtained under this
assumption. The search for exact solutions describing static
neutral, charged, isotropic or anisotropic stellar type
configurations has continuously attracted the interests of
the scientific community. A huge number of analytical
solutions of the Einstein gravitational field equations
describing the interior structure of the static fluid spheres
were found in the past 100 years (for reviews of the interior
solutions of the Einstein gravitational field equations, see
[38–40]). The study of the stellar structure can also provide
important constraints on modified theories of gravity.
Presently, a large number of neutron star masses are
available, due to a significant increase in the precision
of the observations [41,42]. These observations have
revealed an intrinsically complex distribution of the masses
of the neutron stars, with the important conclusion that last
century’s paradigm, with a single, 1.4 M⊙ mass scale, is
not supported by the astronomical data. A bimodal or even
more complex distribution can actually be seen in the
numerical data [42]. Observations performed through
pulsar timing [43,44] have confirmed with a high precision
that some neutron stars have masses of around 2 M⊙. On
the other hand, firm limits on the maximum and minimum
values of the neutron star masses in nature are still
unknown. Besides the information of the maximum masses

and radii of neutron or other stars, observations of the
surface gravitational redshift can also provide important
constraints on modified theories of gravity. The structure
and physical properties of specific classes of neutron, quark
and exotic stars in various modified gravity theories have
been extensively studied in [45–56].
It is the goal of this paper to investigate the properties of

relativistic compact high density stars in the hybrid metric-
Palatini theory in its scalar-tensor version. By adopting a
spherically symmetric geometry and a perfect fluid matter
source, as a first step in our study we obtain the mass
continuity equation and the Tolman-Oppenheimer-Volkoff
equation, describing, together with the generalized Klein-
Gordon equation satisfied by the scalar field, the macro-
scopic properties of the star. The structure equations of the
hybrid metric-Palatini theory are then solved numerically
for several prescribed equations of state of the dense matter.
As specific examples of high density compact objects, we
consider stars described by the causal stiff fluid (Zeldovich)
equation of state, with the property that the speed of sound
in the dense matter equals the speed of light; the radiation-
type equation of state, describing a photon gas, for which
the trace of the energy-momentum tensor is zero; the quark
matter equation of state, and, finally, the Bose-Einstein
condensate equation of state, corresponding to a polytropic
equation of state with polytropic index n ¼ 1. For all these
physical models, the global astrophysical parameters of the
stars (radius and mass), as well as the scalar field, are
obtained in both standard GR and in the hybrid metric-
Palatini gravity theory. This procedure allows an in-depth
comparison of the two approaches for the description of
stellar structure and properties. As a general conclusion of
our study, we find that hybrid metric-Palatini gravity allows
the existence of more massive stars, as compared to GR.
Furthermore, two classes of hybrid metric-Palatini stellar
models, corresponding to two fixed forms of the scalar
field, are also investigated in detail. An interesting result of
this analysis is that in the case of a constant scalar field,
which is the minimum of a Higgs type potential, the
equation of state of the matter takes the form of the bag
model equation of state, describing quark matter.
The present paper is organized as follows. The hybrid

metric-Palatini gravity theory is briefly presented in
Sec. II. The system of gravitational field equations,
describing the star interior, are presented in Sec. III, where
the structure equations of the star (mass continuity, Tolman-
Oppenheimer-Volkoff, and Klein-Gordon) are also derived,
and reformulated in a dimensionless form. The structure
and global astrophysical parameters of stiff fluid, radiation
fluid, quark matter and Bose-Einstein Condensate stars are
obtained by numerically integrating the structure equations,
in Sec. IV. Stellar models with fixed forms of the scalar
field are analyzed in Sec. V. We discuss and conclude our
results in Sec. VI.
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II. HYBRID METRIC-PALATINI GRAVITY:
FORMALISM

The action for the hybrid metric-Palatini gravity is [21]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð1Þ

where κ2 ≡ 8πG0=c4, with G0 and c denoting the standard
gravitational constant and the speed of light, respectively,
Sm is the matter action, R is the metric Einstein-Hilbert
term, R≡ gμνRμν is the Palatini curvature, and Rμν is
defined in terms of an independent connection Γ̂α

μν as

Rμν ≡ Γ̂α
μν;α − Γ̂α

μα;ν þ Γ̂α
αλΓ̂λ

μν − Γ̂α
μλΓ̂λ

αν: ð2Þ

Varying the action (1) with respect to the metric, one
obtains the following gravitational field equations

Gμν þ FðRÞRμν −
1

2
fðRÞgμν ¼ κ2Tμν; ð3Þ

where the matter energy-momentum tensor is defined as

Tμν ≡ −
�

2ffiffiffiffiffiffi−gp
�
δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð4Þ

The independent connection is compatible with the metric
FðRÞgμν, conformal to gμν; the conformal factor is given by
FðRÞ≡ dfðRÞ=dR. The latter considerations imply that

Rμν ¼ Rμν þ
3

2

1

F2ðRÞFðRÞ;μFðRÞ;ν

−
1

FðRÞ∇μFðRÞ;ν −
1

2

1

FðRÞ gμν□FðRÞ: ð5Þ

Note that R can be obtained from the trace of the field
equations (3), which yields: FðRÞR − 2fðRÞ − R ¼ κ2T.
The hybrid metric-Palatini action (1) can be turned into a

scalar-tensor theory by introducing an auxiliary field E,
given by the following action (we refer the reader to [21]
for more details):

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðEÞ þ f0ðEÞðR − EÞ�: ð6Þ

The field E is dynamically equivalent to the Palatini scalar
R if f00ðRÞ ≠ 0. Defining

ϕ≡ f0ðEÞ; VðϕÞ ¼ Ef0ðEÞ − fðEÞ; ð7Þ

the action becomes

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ ϕR − VðϕÞ� þ Sm: ð8Þ

Varying this action with respect to the metric, the scalar ϕ
and the connection yields the following field equations:

Rμν þ ϕRμν −
1

2
ðRþ ϕR − VÞgμν ¼ κ2Tμν; ð9Þ

R − Vϕ ¼ 0; ð10Þ

∇̂αð
ffiffiffiffiffiffi
−g

p
ϕgμνÞ ¼ 0; ð11Þ

respectively.
It is useful to note that Eq. (7) is a Clairaut differential

equation [57], that is,

Ef0ðEÞ − fðEÞ ¼ Vðf0ðEÞÞ: ð12Þ

It admits a general linear solution

fðEÞ ¼ hE − VðhÞ; ð13Þ

for arbitrary VðϕÞ and a singular solution followed from the
equation

∂Vðf0ðEÞÞ
∂f0 − E ¼ 0: ð14Þ

Note that the solution of Eq. (11) implies that the
independent connection is the Levi-Civita connection of
a metric hμν ¼ ϕgμν. Thus, we are dealing with a bi-metric
theory, and Rμν and Rμν are related by

Rμν¼Rμνþ
3

2ϕ2
∂μϕ∂νϕ−

1

ϕ

�
∇μ∇νϕþ1

2
gμν□ϕ

�
; ð15Þ

and consequently,

R ¼ Rþ 3

2ϕ2
∂μϕ∂μϕ −

3

ϕ
□ϕ; ð16Þ

which can be used in the action (8) to get rid of the
independent connection and obtain the following scalar-
tensor representation [21]:

S¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ð1þϕÞRþ 3

2ϕ
∂μϕ∂μϕ−VðϕÞ

�
þSm:

It is important to note that this action differs fundamentally
from the w ¼ −3=2 Brans-Dicke theory in the coupling of
the scalar to the curvature.
Now substituting Eqs. (10) and (15) in Eq. (9), the metric

field equation can be written as an effective Einstein field
equation, i.e. Gμν ¼ κ2Teff

μν , where the effective energy-
momentum tensor is given by
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Teff
μν ¼ 1

1þ ϕ

�
Tμν −

1

κ2

�
1

2
gμνðV þ 2□ϕÞ

þ∇μ∇νϕ −
3

2ϕ
∂μϕ∂νϕþ 3

4ϕ
gμνð∂ϕÞ2

��
: ð17Þ

The scalar field is governed by the second-order evolu-
tion equation (we refer the reader to [21] for more details),

−□ϕþ 1

2ϕ
∂μϕ∂μϕþ ϕ½2V − ð1þ ϕÞVϕ�

3
¼ ϕκ2

3
T; ð18Þ

which is an effective Klein-Gordon equation. This last
expression shows that, unlike in the Palatini (w ¼ −3=2)
case, the scalar field is dynamical. Thus, the theory is not
affected by the microscopic instabilities that arise in
Palatini models with infrared corrections [20]. As for the
matter energy-momentum tensor, it is conserved independ-
ently, so that ∇μT

μ
ν ¼ 0.

It is important to analyze the post-Newtonian parameters
of the theory, in order to determine the viability of the
theory with local gravitational tests. To this effect, we
consider the post-Newtonian analysis and consider the
perturbations of Eqs. (17) and (18) in a Minkowskian
background. Consider ϕ ¼ ϕ0 þ φðxÞ, where ϕ0 is the
asymptotic value of the field far away from the local
system, and a quasi-Minkowskian coordinate system in
which gμν ≈ ημν þ hμν, with jhμνj ≪ 1. This provides the
standard post-Newtonian metric up to second order for this
class of theories, with the following results (we refer the
reader to Ref. [37] for details):

Geff ≡ κ2

8πð1þ ϕ0Þ
�
1þ ϕ0

3
e−mφr

�
; ð19Þ

γ ≡ ½1þ ϕ0 exp ð−mφrÞ=3�
½1 − ϕ0 exp ð−mφrÞ=3�

; ð20Þ

m2
φ ≡ 1

3
½2V − Vϕ − ϕð1þ ϕÞVϕϕ�jϕ¼ϕ0

: ð21Þ

In the hybrid metric-Palatini theory there are two possibil-
ities to obtain that the PPN parameter is γ ≈ 1. Note that the
first one is the same as in fðRÞ theories and involves a very
massive scalar field [14]. The second possibility resides
imposing ϕ0 ≪ 1, so that the Yukawa-type corrections are
very small regardless of the magnitude of mφ. This latter
case could allow for the existence of a long-range scalar
field able to modify the cosmological dynamics, but leaves
the local gravity tests unaffected.

III. THE HYDROSTATIC EQUILIBRIUM
EQUATIONS FOR SPHERICALLY SYMMETRIC
STARS IN HYBRID METRIC-PALATINI GRAVITY

Consider the following line element in curvature coor-
dinates, which represents a static and spherically symmetric
geometry,

ds2¼−eνðrÞc2dt2þeλðrÞdr2þ r2ðdθ2þ sin2θdφ2Þ; ð22Þ

where the metric functions νðrÞ and λðrÞ are functions of
the radial coordinate and denote the mass and the redshift
functions, respectively, with radial coordinate range
0 ≤ r < ∞. It is possible to construct asymptotically flat
spacetimes, in which νðrÞ → 0 and λðrÞ → 0 as r → ∞. For
the matter energy-momentum tensor, Tμν, we adopt the
perfect fluid form, so that in the comoving frame with four-
velocity uμ ¼ ðe−ν=2; 0; 0; 0Þ it has the components
Tμ
ν ¼ diagð−ρc2; pr; pt; ptÞ, where ρ is the energy density,

and pr and pt are the radial and tangential pressures,
respectively.
Using the metric (22), the effective Einstein field equa-

tion (17) provides the following gravitational field equations

κ2ρðrÞc2 ¼ 1

r2
½1 − e−λð1 − rλ0Þ�ð1þ ϕÞ − e−λ

�
ϕ00 −

3ϕ02

4ϕ

�
þ ϕ0

2r
e−λðrλ0 − 4Þ − V

2
; ð23Þ

κ2prðrÞ ¼
�
1

r2
ðe−λ − 1Þ þ ν0

r
e−λ

�
ð1þ ϕÞ þ ϕ0

�
ν0

2
þ 2

r
þ 3ϕ0

4ϕ

�
e−λ þ V

2
ð24Þ

κ2ptðrÞ¼
��

ν00

2
þ
�
ν0

2

�
2

þ ν0

2r

�
e−λ−

1

2

λ0e−λ

r

�
1þ r

ν0

2

��
ð1þϕÞþ

�
ϕ00 þϕ0ν0

2
þ3ϕ02

4ϕ

�
e−λþϕ0

r
e−λ

�
1−

rλ0

2

�
þV
2
; ð25Þ

wherewehave denoted bya prime thederivativewith respect to radial coordinate r. TheeffectiveKlein-Gordon equation (18) is
given by

−
�
ϕ00 þ ϕ0ν0

2
−
ϕ02

2ϕ
þ 2ϕ0

r

�
e−λ þ ϕ0λ0

2
e−λ þ ϕ

3
½2V − ð1þ ϕÞVϕ� ¼

ϕκ2

3
T: ð26Þ
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The conservation of the matter energy-momentum tensor
gives the following relation between the components of the
energy-momentum tensor, and themetric tensor component ν,

ν0 ¼ −
2p0

r

ρc2 þ pr
þ 2ðpt − prÞ

r
: ð27Þ

Note that Eqs. (23)–(26) provide four independent
equations, for seven unknown quantities, i.e. ρðrÞ, prðrÞ,
ptðrÞ, νðrÞ, λðrÞ, ϕðrÞ and VðrÞ. Thus, the system of
equations is underdetermined, so that we reduce the
number of unknown functions by assuming suitable con-
ditions. In the following we restrict our analysis to the
isotropic pressure distribution case only, by assum-
ing pr ¼ pt ¼ p.

A. The mass continuity and the
Tolman-Oppenheimer-Volkoff equation

As a first step in our analysis, we divide Eq. (23) by
1þ ϕ, and introduce the effective gravitational coupling
defined as Geff ¼ G0=ð1þ ϕÞ, where G0 is the standard
general relativistic gravitational constant. Hence, we can
introduce the effective gravitational coupling denoted as
κ2eff ¼ 8πGeff=c4. By taking into account the mathematical
identity

ϕ00 −
3ϕ02

4ϕ
¼ ϕ3=4 d

dr
ϕ0

ϕ3=4 ¼ 4ϕ3=4 d2

dr2
ϕ1=4; ð28Þ

and by denoting ϕ ¼ eΦ − 1 and Geff ¼ G0e−Φ, so that
ϕ0=ð1þ ϕÞ ¼ Φ0, one arrives at the following relations

1

1þ ϕ

�
ϕ00 −

3ϕ02

4ϕ

�
¼ 1

4

�
1þ 3

1 − eΦ

�
Φ02 þΦ00 ¼ fðΦÞ;

VðϕÞ ¼ ð1þ ϕÞUðΦÞ ¼ eΦUðΦÞ: ð29Þ

Equation (23) can be written as

d
dr

re−λ ¼ −
rfðΦÞ þ 3Φ0=2

1þΦ0r=2
re−λ þ 1− κ2effρc

2r2 −Ur2=2
1þΦ0r=2

:

ð30Þ

By representing the metric tensor coefficient e−λ as

e−λ ¼ 1 −
2G0meffðrÞ

c2r
; ð31Þ

it follows that the effective mass meffðrÞ satisfies the
differential equation

dmeff

dr
¼ −

rfðΦÞ þ 3Φ0=2
1þΦ0r=2

meff þ
4πr2

κ2c2½1þΦ0r=2�
�
2
Φ0

r
þ U

2
þ fðΦÞ þ κ2effρc

2

�
; ð32Þ

with the general solution given by

meffðrÞ ¼
4π

κ2c2
exp

�
−
Z

r

0

r0fðΦðr0ÞÞ þ 3Φ0ðr0Þ=2
1þΦ0ðr0Þr0=2 dr0

� Z
r

0

exp

�Z
r0

0

r00fðΦðr00ÞÞ þ 3Φ0ðr00Þ=2
1þΦ0ðr00Þr00=2 dr00

�

×
r02

½1þΦ0ðr0Þr0=2�
�
2Φ0ðr0Þ

r0
þ UðΦðr0ÞÞ

2
þ fðΦðr0ÞÞ þ κ2effρðr0Þc2

�
dr0; ð33Þ

where we have used the transformation c2=2G0 ¼ 4π=κ2c2. Equivalently, Eq. (32) can be written as

dmeff

dr
¼ 4πρeffr2; ð34Þ

where we have introduced the effective density of the star, defined as

ρeff ¼ −
rfðΦÞ þ 3Φ0=2
4πr2½1þΦ0r=2�meff þ

1

κ2c2½1þΦ0r=2�
�
2
Φ0

r
þUðΦÞ

2
þ fðΦÞ þ κ2effρc

2

�
: ð35Þ

Equation (24) can be solved for ν0 to give

ν0 ¼ ðκ2pe−Φ − U=2Þr2 − ð1 − 2G0meff=c2rÞf1þ r½2þ rhðΦÞ�Φ0g þ 1

rð1 − 2G0meff=c2rÞð1þΦ0r=2Þ ; ð36Þ

where we have defined
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hðΦÞ ¼ 3eΦΦ0

4ðeΦ − 1Þ : ð37Þ

Then, with the use of the energy-momentum conservation equation (27), we obtain the generalized Tolman-
Oppenheimer-Volkoff equation, describing the hydrostatic equilibrium of compact astrophysical objects in hybrid
metric-Palatini gravity as

dp
dr

¼ −
ðρc2 þ pÞfðκ2pe−Φ − U=2Þr2 − ð1 − 2G0meff=c2rÞf1þ r½2þ rhðΦÞ�Φ0g þ 1g

rð1 − 2G0meff=c2rÞð2þΦ0rÞ : ð38Þ

Finally, in the new scalar field variable, the Klein-Gordon equation (26) takes the form

−Φ00 þ1

2

2−eΦ

eΦ−1
Φ02−Φ0

�
−

p0

ρc2þp
þ2

r
−
G0

c2
4πρeffr3−meff

r2ð1−2G0meff=c2rÞ
�
þ eΦ−1

3ð1−2G0meff=c2rÞ
�
UðΦÞ−dUðΦÞ

dΦ
− κ2effT

�
¼ 0;

ð39Þ

where we have used the following relations

λ0 ¼ 2G0

c2
1

e−λr2

�
r
dmeff

dr
−meff

�
ð40Þ

and

dV
dϕ

¼ d
dϕ

½Uð1þ ϕÞ� ¼ UðΦÞ þ dUðΦÞ
dΦ

: ð41Þ

The system of Eqs. (32), (38) and (26) must be solved,
after specifying an equation of state for the matter inside the
star, p ¼ pðρÞ, with the boundary conditions meffð0Þ ¼ 0,
ρð0Þ ¼ ρc, Φð0Þ ¼ Φ0, Φ0ð0Þ ¼ Φ0

0ð0Þ, and pðRÞ ¼ 0,
respectively, where ρc is the central density, and R is the
radius of the star, respectively. However, due to the singular
nature of the center of the star, corresponding to the point
r ¼ 0, when numerically integrating the gravitational field
equations one must impose the initial conditions at a small
but nonzero radius r ¼ r0 [58], so that meffðr0Þ ¼ 0,
ρðr0Þ ¼ ρc etc. On the other hand, we must determine
the initial values of the radial derivatives of Φ at the center,
Φ0ðr0Þ, so that they are consistent with a regular Taylor
expansions at the origin, which can be given, for example,
as [58]

ΦðrÞ ¼ Φð0Þ þ 1

6
r2ΔΦð0Þ þ Oðr4Þ; ð42Þ

where ΔΦð0Þ ¼ ΦðrÞ −Φð0Þ. This series expansion deter-
mines the derivative of the scalar field as

lim
r→r0

Φ0ðrÞ ≈ 1

3
r0ΔΦð0Þ: ð43Þ

Near the origin, we can represent the effective mass as
meffðrÞ ∼ 4πr3ρc=3. By taking into account the limits

limr→r0Φ
02ðrÞ ¼ 0, limr→r0p

0ðrÞ ¼ 0, limr→r0meff=r ¼ 0,
limr→r0meff=r2 ¼ 0, as well as the relation Φ00ðrÞ ¼
ΔΦð0Þ, from Eq. (39), we obtain

ΔΦð0Þ ¼ eΦ0 − 1

3

�
UðΦ0Þ −

dUðΦÞ
dΦ

				
Φ¼Φ0

þ 8πG
c4

e−Φ0ðρcc2 − 3pcÞ
�
; ð44Þ

giving for the central value of the derivative of the scalar
field the expression

lim
r→r0

Φ0ðrÞ ¼ eΦ0 − 1

9
r0

�
UðΦ0Þ −

dUðΦÞ
dΦ

				
Φ¼Φ0

þ 8πG
c4

e−Φ0ðρcc2 − 3pcÞ
�
: ð45Þ

B. Dimensionless form of the mass continuity,
Tolman-Oppenheimer-Volkoff and

Klein-Gordon equations

In the following we introduce a set of dimensionless
variables ðη; θ;Meff ; P; uÞ, defined as

r¼aη; ρ¼ρcθ; meff¼M0Meff ; p¼ρcc2P; u¼a2U;

ð46Þ

where

a ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG0ρc

p ; M0 ¼
ac2

G0

¼ c3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG3

0ρc

q : ð47Þ

In the new variables Eqs. (26), (32) and (38) take the
following dimensionless form:
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dMeff

dη
¼ −

ηfðΦðηÞÞ þ ð3=2ÞðdΦ=dηÞ
1þ ηðdΦ=dηÞ=2 Meff þ

η2

2½1þ ηðdΦ=dηÞ=2�
�
2

η

dΦ
dη

þ u
2
þ fðΦðηÞÞ þ θe−Φ

�
; ð48Þ

dP
dη

¼ −
ðθ þ PÞfðPe−Φ − u=2Þη2 − ð1 − 2Meff=ηÞf1þ η½2þ ηhðΦðηÞÞ�ðdΦ=dηÞg þ 1g

ηð1 − 2Meff=ηÞ½2þ ηðdΦ=dηÞ� ; ð49Þ

−
d2Φ
dη2

þ 1 − eΦ=2
eΦ − 1

�
dΦ
dη

�
2

−
dΦ
dη

�
−
dP=dη
θ þ P

þ 2

η
−
ρeffðηÞη3=2 −Meff

η2ð1 − 2Meff=ηÞ
�

þ ðeΦ − 1Þ
3ð1 − 2Meff=ηÞ

��
uðΦÞ − duðΦÞ

dΦ

�
− e−Φð−θ þ 3PÞ

�
¼ 0; ð50Þ

respectively, where

ρeffðηÞ ¼ −2
ηfðΦðηÞÞ þ 3ðdΦ=dηÞ=2
η2½1þ ηðdΦ=dηÞ=2� Meff þ

1

1þ ηðdΦ=dηÞ=2
�
2

η

dΦ
dη

þ uðΦÞ
2

þ fðΦðηÞÞ þ θe−Φ
�
: ð51Þ

The system of Eqs. (48)–(50) must be integrated with the boundary conditions Meffð0Þ ¼ 0, θð0Þ ¼ 1, Φð0Þ ¼ Φ0,
ðdΦ=dηÞjη¼0 ¼ Φ0

0, respectively, once the equation of state of the matter P ¼ PðθÞ has been chosen. As for the numerical
value of the derivative of the scalar field at the center of the star, it can be obtained in a dimensionless form as

lim
η→η0

Φ0ðηÞ ¼ eΦ0 − 1

9
η0

�
uðΦ0Þ −

duðΦÞ
dΦ

				
Φ¼Φ0

þ e−Φ0ð1 − 3PcÞ
�
; ð52Þ

where Pc is the value of the dimensionless pressure P at the center of the star.

We consider specific numerical solutions describing the
structure of the stars in hybrid metric-Palatini gravity for a
given equation of state of dense matter in the next section.

IV. STRUCTURE OF HIGH DENSITY COMPACT
OBJECTS IN HYBRID METRIC-PALATINI

GRAVITY

In the present section, we investigate the properties of high
density stars in the hybrid metric-Palatini theory without
imposing any restrictions on the functional form of the scalar
fieldΦ. In the next section, we investigate the field equations
under the assumption that the scalar field Φ has a specific
mathematical form, which is not determined dynamically by
the field equations. In this latter case, after imposing the
functional form ofϕ, one can obtain from the field equations
either the form of the equation of state of the matter or the
dynamical behavior of the scalar field potential associated to
the a priori given form of the scalar field.
As for the equation of state of the matter, we consider four

cases, corresponding to the stiff fluid equation of state, with
P ¼ θ, the radiation fluid equation of statewithP ¼ θ=3, the
quark matter equation of stateP ¼ ðθ − 4bÞ=3, respectively,
and to the Bose-Einstein condensate superfluid neutron
matter equation of state P ∝ θ2, respectively.
In the following, we assume for all cases that the

potential UðΦÞ is of the Higgs type

UðΦÞ ¼ −
μ2

2
Φ2 þ ξ

4
Φ4; ð53Þ

where μ2 and ξ are constants. We also assume that similarly
to the standard case, the constant μ2 < 0 is related to the
mass of the hybrid metric-Palatini scalar particle by
the relation m2

Φ ¼ 2ξv2 ¼ −2μ2, where v2 ¼ −μ2=ξ gives
the minimum of the potential. For the case of strong
interactions, the Higgs self-coupling constant λ ≈ 1=8
[59], which is a value inferred on the determination of
the mass of the Higgs boson from accelerator experiments.
The dimensionless form uðΦÞ of the potential is given by

uðΦÞ ¼ −
μ20
2
Φ2 þ ξ0

4
Φ4; ð54Þ

where μ20 ¼ a2μ2, and ξ0 ¼ a2ξ, with a2 given by Eq. (47).
It is important to note that in the dimensionless represen-
tation of the potential the coefficients μ20 and ξ0 are
functions of the central density of the star.
In all cases, we compare our results with the standard

general relativistic spherically symmetric stellar models,
described by the structure equations [60]

dm
dr

¼ 4πρr2; ð55Þ
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dpðrÞ
dr

¼−
ðG0=c2Þ½ρðrÞc2þpðrÞ�½ð4π=c2ÞpðrÞr3þmðrÞ�

r2ð1−2G0mðrÞ=c2rÞ :

ð56Þ

In the dimensionless variables introduced in Eqs. (46), the
general relativistic structure equations take the dimension-
less form

dMGRðηÞ
dη

¼ η2θGRðηÞ; ð57Þ

dPGRðηÞ
dη

¼ −
½θGRðηÞ þ PGRðηÞ�½PGRðηÞη3 þMGRðηÞ�

η2ð1 − 2MGRðηÞ=ηÞ
;

ð58Þ

respectively, which after imposing an equation of state
P ¼ PðθÞ must be integrated with the boundary conditions
θGRð0Þ ¼ 1 and θGRðηSÞ ¼ 0, respectively.

A. Explicit form of f ðRÞ
Before proceeding with the analysis with the general

relativistic spherically symmetric stellar models, it is
interesting to arrive at a specific form for the fðRÞ, by
taking into account the potential (53). Now, using Eq. (10),
one arrives at

R¼dVðϕÞ
dϕ

¼−μ2 lnð1þϕÞ

×

�
1− lnð1þϕÞ

�
ξ

μ2
lnð1þϕÞ

�
1

4
lnð1þϕÞþ1

�
−
1

2

��
;

ð59Þ

Using this result, one cannot solve Eq. (7) to provide the
exact explicit form for fðRÞ. However, by performing a
series expansion of Eq. (59) around the point ϕ ¼ 0 [which
is compatible with the analysis leading to Eqs. (20)
and (21)], we obtain

R ¼ −μ2ϕþ
�
μ2

6
þ ξ

�
ϕ3 −

5

24
ðμ2 þ 6ξÞϕ4 þOðϕ5Þ:

ð60Þ

Similarly, for the potential VðϕÞ (29), we obtain

VðϕÞ ¼ −
μ2ϕ2

2
þ 1

4

�
μ2

6
þ ξ

�
ϕ4 þOðϕ5Þ: ð61Þ

In the first order of approximation, VðϕÞ ≈ −μ2ϕ2=2, and
the Clairaut equation (7) becomes

−
μ2

2
½f0ðEÞ�2 ¼ Ef0ðEÞ − fðEÞ; ð62Þ

(recall E ¼ R) which yields the general solution

fðEÞ ¼ c1Eþ c21
2
μ2; ð63Þ

where c1 is an arbitrary constant of integration. In the next
order of approximation we obtain for fðEÞ the Clairaut type
equation

−
μ2

2
½f0ðEÞ�2 þ 1

24
ðμ2 þ 6ξÞ½f0ðEÞ�4 ¼ Ef0ðEÞ − fðEÞ;

ð64Þ

with the general solution

fðEÞ ¼ c1Eþ c21
2
μ2 −

1

4

�
μ2

6
þ ξ

�
c41; ð65Þ

where c1 is an arbitrary integration constant.
By iteratively continuing this process, we arrive at the

conclusion that for the adopted functional form of the
potential we generally have

fðEÞ ¼ c1Eþ c2ðc1; μ; ξÞ; ð66Þ

where the constant c1 must be determined from some
appropriate physical requirements or initial/boundary con-
ditions. It is interesting to note that this solution corre-
sponds to a solution fðRÞ ¼ R with an effective
cosmological constant given by c2ðc1; μ; ξÞ.
On the other hand, in the present approach the numerical

values of the constant c2, which is essentially generated by
the existence of the coupling, are dependent on the
parameters ðμ; ξÞ of the adopted Higgs type potential. In
order to study the effects of the coupling on the stellar
structure, we vary the values of the potential parameters in
our numerical investigations. For each investigated stellar
structure (corresponding to a specific equation of state of
the dense matter), we also present the standard general
relativistic result, which is obtained by suppressing the
coupling by taking the limits μ → 0 and ξ → 0. Hence, our
investigations can provide a clear picture of the effects of
the variation of the gravitational couplings on the structure
of high density compact astrophysical objects.

B. Stiff fluid stars

The equation of state P ¼ θ is called the stiff (Zeldovich)
equation of state, and it gives the upper limit for the
equation of state of a hot nucleonic gas. It is believed that
matter actually behaves in this manner at densities above
about ten times the nuclear density, that is, at densities
greater than 1017 g=cm3, and at temperatures
T ¼ ðρ=σÞ1=4 > 1013 K, where σ is the radiation constant
[60]. For this equation of state, the speed of sound is
c2s ¼ ∂P=∂θ ¼ 1, so that the speed of matter perturbations
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cannot exceed the speed of light. The stiff matter equation
of state plays an important role in astrophysics. By using
the spherically symmetric static Einstein field equations,
the principle of causality, and Le Chatelier’s principle, it
was shown in [61] that the maximum mass of the
equilibrium configuration of a high density neutron star
cannot exceed the upper limit of 3.2 M⊙. To obtain this
fundamental result, it was assumed that for high densities
the equation of state of the neutron matter is the stiff fluid
equation of state p ¼ ρc2. The numerical value of the

absolute maximum mass of a neutron star represents a
fundamental method for distinguishing observationally
neutron or other compact stars from black holes.
The mass-radius relations for stiff fluid stars in both

standard general relativity and hybrid metric Palatini
gravity theory are represented in Fig. 1.
The properties of this class of stars have been obtained

by numerically integrating the star structure Eqs. (32), (38)
and (39) for the stiff fluid equation of state. In order to
obtain the plots we have chosen for the coefficients μ and ξ
in the Higgs potential the values μ ¼ 10−5 cm−1 and
ξ ¼ 8.5 × 10−10 cm−2, respectively. Then, we have varied
the central values of the scalar field Φð0Þ, thus generating
several sequences of stable stiff fluid stellar models. The
derivative of the scalar field Φ0 at the center of the star was
calculated to be between Φ0ð0Þ ¼ −1.8 × 10−16 cm−1 and
Φ0ð0Þ ¼ −5.7 × 10−16 cm−1 in the central density interval
considered. In order to compare the structure of the stars in
hybrid metric-Palatini gravity and standard general rela-
tivity, we also present the mass-radius relation for stiff fluid
stars, obtained as the solutions of the general relativistic
mass continuity and TOV equations (55) and (56),
respectively.
The central density was modified between the values

3.1 × 1014 and 2.9 × 1015 g=cm3 for the hybrid metric-
Palatini gravity stars, withΦ ≠ 0, and in the range 3.1 × 1014

and 2.2 × 1015 g=cm3 for the standard general relativistic
model. The maximummasses for these stellar sequences are
Mmax ¼ 3.278 M⊙ (corresponding to the standard general
relativistic maximum mass value [61]),Mmax ¼ 3.454 M⊙,
Mmax¼3.603M⊙, Mmax¼3.811M⊙ and Mmax¼3.968M⊙,
respectively.
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FIG. 2. Variation of the dimensionless scalar field Φ (left) and of the Higgs type potential u (right) for a stiff fluid star in the hybrid
metric-Palatini gravity theory for Φð0Þ ¼ 0.73, and for different values of the potential parameters μ0 and ξ0 and of the central values of
the derivatives of the scalar field: μ0 ¼ 1.05, ξ0 ¼ 1.15, ðdΦ=dηÞjη¼0 ¼ −1.32 × 10−4 (solid curve), μ0 ¼ 2.05, ξ0 ¼ 1.25,
ðdΦ=dηÞjη¼0 ¼ −3 × 10−4 (dotted curve), μ0 ¼ 3.05, ξ0 ¼ 1.35, ðdΦ=dηÞjη¼0 ¼ −5.79 × 10−4 (short dashed curve), μ0 ¼ 4.05,
ξ0 ¼ 1.45, ðdΦ=dηÞjη¼0 ¼ −9.68 × 10−4 (dashed curve), and μ0 ¼ 5.05, ξ0 ¼ 1.55, ðdΦ=dηÞjη¼0 ¼ −1.47 × 10−3 (long dashed curve).
The initial conditions for the central density and dimensionless mass used to numerically integrate the hybrid metric-Palatini gravity
structure equations are θð0Þ ¼ 1 and Meffð0Þ ¼ 0, respectively.

FIG. 1. Mass-radius relation for stiff fluid stars in hybrid metric-
Palatini gravity theory, for μ ¼ 10−5 cm−1, ξ ¼ 8.5 × 10−10 cm−2,
Φ0ð0Þ ¼ −1.8 × 10−16 to −5.7 × 10−16 cm−1 for the central den-
sities considered, and for different values ofΦð0Þ:Φ≡ 0 (standard
general relativistic limit) (solid curve),Φð0Þ ¼ 0.14 (dotted curve),
Φð0Þ ¼ 0.22 (short dashed curve), Φð0Þ ¼ 0.28 (dashed curve),
and Φð0Þ ¼ 0.30 (long dashed curve).
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The variations of the scalar field Φ and of the dimen-
sionless Higgs type potential of the scalar field are
represented in Fig. 2.
To obtain the variation of the dimensionless potential, we

have numerically integrated the dimensionless star struc-
ture equations (48)–(50) for the stiff fluid equation of state,
with the use of the initial conditions θð0Þ ¼ 1,
Meffð0Þ ¼ 0, Φð0Þ ¼ 0.73, and for different values of
the potential parameters μ0 and ξ0, which generate
a set of different central values of the derivative of the
scalar field, ðdΦ=dηÞjη¼0 ¼ −1.32 × 10−4, ðdΦ=dηÞjη¼0¼
−3×10−4, ðdΦ=dηÞjη¼0¼−5.79×10−4, ðdΦ=dηÞjη¼0¼
−9.68×10−4, ðdΦ=dηÞjη¼0 ¼ −1.47 × 10−3, respectively.
The scalar field Φ, shown in Fig. 2, is a monotonically
decreasing function, reaching the zero value at the surface,
a property which is independent on the chosen numerical
values of μ and ξ. As one can see from Fig. 2, for the
adopted numerical values of the parameters μ0 and ξ0, the
Higgs type potential of the scalar field takes negative values
inside the star, and it reaches the zero value on the star
surface. In order to obtain some definite numerical results,
we have stopped the numerical integration when the
energy density (pressure) at the star’s surface reached
the value PðηSÞ ¼ 0.003.
As one can see, stiff fluid hybrid metric-Palatini stars

are much more massive than their general relativistic
counterparts. However, an increase in the central density
to ρc ¼ 1016 g=cm3 will decrease the mass of the star to
M ¼ 4.24 M⊙, while a central density of ρc ¼ 1017 g=cm3

gives a mass of the hybrid metric-Palatini gravity star of the
order of M ¼ 1.34 M⊙ only.

C. Radiation fluid stars

The radiation fluid is described by the equation of state
P ¼ θ=3. The possibility that stars obeying the radiation
equation of state, and therefore made of photons, could
exist, has already been investigated in the literature.
Numerical solutions of Einstein’s field equation describing
static, spherically symmetric stars made of a photon gas
were obtained in [62]. On the other hand, it was pointed out
in [63] that a class of stellar objects called “Radiation
Pressure Supported Stars” (RPSS) can exist even in the
framework of classical Newtonian gravity. Their general-
izations to standard general relativity are denoted
“Relativistic Radiation Pressure Supported Stars”
(RRPSS). It was suggested in [64] that the formation of
RRPSSs could take place during the gravitational collapse
of massive matter clouds, which may end in a very high
density phase. Independently of the details of the contrac-
tion process, the trapped radiation flux always reaches the
Eddington luminosity at sufficiently large cosmological
redshifts z ≫ 1.
We have obtained the properties of the radiation fluid

stars in hybrid metric-Palatini gravity by numerically

integrating the star structure equations Eqs. (32), (38)
and (39) and (48)–(50), respectively, for the equation of
state P ¼ ρc2=3 (dimensionless form P ¼ θ=3). We have
used the same values for the parameters of the Higgs
potential as in the case of the stiff fluid star. In order to
compare the structure of the stars in hybrid metric-Palatini
gravity and standard GR, we have also presented the
corresponding solution of the general relativistic mass
continuity and TOV equations (57) and (58), respectively.
To obtain the mass-radius relation we have used the same

initial values for the scalar field and its derivative as in the stiff
fluid case, and we have varied the central value Φð0Þ of the
scalar field. The derivative of the scalar field Φ0 at the
center of the star was calculated to be between Φ0ð0Þ ¼
−2.7 × 10−17 andΦ0ð0Þ ¼ −1.1 × 10−16 cm−1 for theΦð0Þ
values considered.We have stopped the integrationwhen the
density reaches the surface value ρ ¼ 2 × 1014 g=cm3. The
mass-radius relations for standard general relativistic and
hybrid metric-Palatini gravity theory stars are presented in
Fig. 3. The central density goes between 3.1 × 1014 and
2.95 × 1015 g=cm3 for all curves. For the adopted set of
initial conditions and scalar field potential parameters,
the maximum obtained masses are Mmax ¼ 2.027 M⊙,
Mmax¼2.088M⊙, Mmax ¼ 2.170 M⊙, Mmax ¼ 2.281 M⊙,
and M ¼ 2.442 M⊙.
The variations of the scalar field Φ and of the Higgs type

potential of the scalar field for the radiation fluid star are
represented in Fig. 4. The curves have been obtained by
numerically integrating the set of the dimensionless equa-
tions (48)–(50) by using the initial conditions θð0Þ ¼ 1,
Meffð0Þ ¼ 0, Φð0Þ ¼ 0.43, and where ðdΦ=dηÞjη¼0 is a

FIG. 3. Mass-radius relation for radiation fluid stars in hybrid
metric-Palatini gravity theory, for μ ¼ 10−5 cm−1, ξ ¼
8.5 × 10−10 cm−2 and for different values of Φð0Þ and Φ0ð0Þ:
Φ≡ 0 Φ0 ≡ 0 (standard general relativistic limit) (solid curve),
Φð0Þ ¼ 0.10, Φ0ð0Þ ¼ −2.71 × 10−17 cm−1 (dotted curve),
Φð0Þ ¼ 0.15, Φ0ð0Þ ¼ −1.01 × 10−16 cm−1 (short dashed
curve), Φð0Þ ¼ 0.20, Φ0ð0Þ ¼ −2.0 × 10−16 cm−1 (dashed
curve), and Φð0Þ ¼ 0.25, Φ0ð0Þ ¼ −2.8 × 10−16 cm−1 (long
dashed curve).
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function depending on Φð0Þ, the potential parameters, and
the numerical values of the dimensionless central pressure.
The global structure of the radiation fluid stars in both

standard GR and hybrid metric-Palatini gravity is similar to
the stiff fluid stars. The scalar field, presented in Fig. 4, is a
decreasing function of η, reaching the value zero on the star
surface. The scalar field potential has negative values inside
the star, and it vanishes on the surface. The radiation fluid
stars are less massive in both standard GR and hybrid
metric-Palatini gravity as compared to the stiff fluid stars.
Still, radiation fluid hybrid metric-Palatini stars are much
more massive than their general relativistic counterparts.

D. Quark stars

There are a large number of theoretical arguments
suggesting that the strange quark matter, consisting of u,
d and s quarks, is the most energetically favorable state of
baryon matter [65]. There are two ways for the formation of
the strange matter: either the quark-hadron phase transition
in the early Universe, or, alternatively, the conversion of
neutron matter into strange matter inside neutron stars at
ultrahigh densities. The possibility of the existence of stars
made of quark matter was proposed in [66,67]. From a
theoretical point of view, the equation of state of the quark
matter can be derived from the fundamental Lagrangian of
the quantum chromodynamics (QCD) [68]. An important
prediction of QCD is the weakening of the quark-quark
interaction at short distances, due to the asymptotic free-
dom of the theory.
The energy density ρ and the pressure p of a quark-gluon

plasma at temperature T and chemical potential μf can be
calculated, by assuming that the interactions of quarks and

gluons are sufficiently small, by using thermal theory. In
first order perturbation theory, after neglecting quark
masses, the equation of state of quark matter is given
by ρ ¼ P

i¼u;d;s;c;e−;μ−ρi þ B, pþ B ¼ P
i¼u;d;s;c;e−;μ−pi,

[65,69], where B, the bag constant, is defined as the
difference between the energy density of the perturbative
and nonperturbative quantum chromodynamical vacuum.
Therefore, the equation of state for quark matter is given by
the Massachusetts Institute of Technology (MIT) bag
model equation of state [65,69]

p ¼ 1

3
ðρc2 − 4Bc2Þ: ð67Þ

The equation of state (67) represents the equation of state
of a gas of massless particles with corrections due to the
trace anomaly of quantum chromodynamics, and due to the
inclusion of perturbative interactions. These corrections are
always negative, and they reduce the energy density of the
quark-gluon plasma at a given temperature by about a
factor two when the strong interaction coupling constant is
of the order of αs ¼ 0.5 [68]. In the dimensionless variables
introduced in Eq. (46), the MIT bag model equation of state
becomes

P ¼ 1

3
ðθ − 4bÞ; ð68Þ

where b ¼ B=ρc.
In order to obtain the properties of the quark stars in the

hybrid metric-Palatini gravity theory, we numerically
integrate the star’s structure equations (32), (38)
and (39), and (48)–(50), respectively, by using the MIT
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FIG. 4. Variation of the dimensionless scalar field Φ (left) and of the Higgs type potential u (right) for a radiation fluid star in the
hybrid metric-Palatini gravity theory for different values of the potential parameters μ and ξ: μ ¼ 1.05, ξ ¼ 1.15 (solid curve), μ ¼ 2.05,
ξ ¼ 1.25 (dotted curve), μ ¼ 3.05, ξ ¼ 1.35 (short dashed curve), μ ¼ 4.05, ξ ¼ 1.45 (dashed curve), and μ ¼ 5.05, ξ ¼ 1.55 (long
dashed curve). The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are θð0Þ ¼ 1,
Meffð0Þ ¼ 0, Φð0Þ ¼ 0.43, while central values of the derivative of the scalar field, corresponding to the different values of the
potential parameters μ0 and ξ0 are ðdΦ=dηÞjη¼0 ¼ −1.73 × 10−5 (solid curve), ðdΦ=dηÞjη¼0 ¼ −7.93 × 10−5 (dotted curve),
ðdΦ=dηÞjη¼0 ¼ −1.81 × 10−4 (short dashed curve), ðdΦ=dηÞjη¼0 ¼ −3.24 × 10−4 (dashed curve), and ðdΦ=dηÞjη¼0 ¼ −5.07 × 10−4

(long dashed curve).
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bag model equation of state (67). We have adopted the
same values for the parameters of the Higgs potential as in
the case of the stiff and radiation fluid stars, respectively. In
order to compare the structure of the quark stars in hybrid
metric-Palatini gravity and standard GR, we have also
presented the corresponding solution of the general rela-
tivistic mass continuity and TOV equations (57) and (58).
In all cases integration stops at P ¼ 0. The mass-radius
relations for the quark stars in both standard general

relativity and hybrid metric-Palatini gravity are shown in
Fig. 5. For the bag constant we have adopted the value
B ¼ 1014 g=cm3. The central density goes between
4.1 × 1014 and 3.2 × 1016 g=cm3, respectively. The maxi-
mum masses of the quark stars for the chosen values of
the parameters of the potential and initial conditions for
the scalar field areMmax ¼ 2.025 M⊙,Mmax ¼ 2.296 M⊙,
Mmax ¼ 2.396 M⊙, Mmax ¼ 2.545 M⊙, and Mmax ¼
2.706 M⊙, respectively.
To integrate the dimensionless field equations, we have

adopted the initial conditions θð0Þ ¼ 1, Meffð0Þ ¼ 0 and
Φð0Þ ¼ 0.47, and where ðdΦ=dηÞjη¼0 is a function depend-
ing onΦðηÞ. We have fixed the value of the bag constant as
b ¼ 0.047. The variations with respect to the dimensionless
radial coordinate η of the scalar field and of the Higgs type
potential of the scalar field inside the quark star are
presented in Fig. 6.
The scalar field inside the star, presented in the left plot

of Fig. 6, is a decreasing function of η. However, in the case
of the quark stars the scalar field does not vanish on the
star’s surface for most of the adopted values of the
parameters of the Higgs potential. On the other hand,
similarly to the previous cases, the scalar field potential has
negative values inside the star, but generally it does not
vanish on the surface. For the adopted range of the physical
parameters, the quark stars are less massive in both standard
GR and hybrid metric-Palatini gravity, as compared to the
stiff and radiation fluid stars. However, quark hybrid
metric-Palatini stars are again much more massive than
their general relativistic counterparts. On the other hand,
the global structure of the quark stars in both standard
GR and hybrid metric-Palatini gravity show significant

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0 2.5
0.10

0.08

0.06

0.04

0.02

0.00

FIG. 6. Variation of the dimensionless scalar fieldΦ (left) and of the Higgs type potential u (right) for a quark star in the hybrid metric-
Palatini gravity theory for different values of the potential parameters μ and ξ: μ ¼ 1.05, ξ ¼ 1.15 (solid curve), μ ¼ 2.05, ξ ¼ 1.25
(dotted curve), μ ¼ 3.05, ξ ¼ 1.35 (short dashed curve), μ ¼ 4.05, ξ ¼ 1.45 (dashed curve), and μ ¼ 5.05, ξ ¼ 1.55 (long dashed
curve). The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are θð0Þ ¼ 1,
Meffð0Þ ¼ 0,Φð0Þ ¼ 0.43, while the central values of the derivatives of the scalar field, corresponding to different values of the potential
parameters μ0 and ξ0 are ðdΦ=dηÞjη¼0 ¼ −1.26 × 10−5 (solid curve), ðdΦ=dηÞjη¼0 ¼ −7.47 × 10−5 (dotted curve), ðdΦ=dηÞjη¼0 ¼
−1.77 × 10−4 (short dashed curve), ðdΦ=dηÞjη¼0 ¼ −3.19 × 10−4 (dashed curve), and ðdΦ=dηÞjη¼0 ¼ −5.026 × 10−4 (long dashed
curve). For the bag constant b, we have adopted the value b ¼ 0.047.

FIG. 5. Mass-radius relation for quark stars in hybrid metric-
Palatini gravity theory, for μ ¼ 10−5 cm−1, ξ ¼ 8.5 × 10−10 cm−2,
and for different values of Φð0Þ and Φ0ð0Þ: Φ≡ 0, Φ0 ≡ 0
(standard general relativistic limit) (solid curve), Φð0Þ ¼ 0.13,
Φ0ð0Þ ¼ −1.4 × 10−16 cm−1 (dotted curve), Φð0Þ ¼ 0.16,
Φ0ð0Þ ¼ −2.0 × 10−16 cm−1 (short dashed curve), Φð0Þ ¼ 0.19,
Φ0ð0Þ ¼ −2.5 × 10−16 cm−1 (dashed curve), and Φð0Þ ¼ 0.22,
Φ0ð0Þ ¼ −2.9 × 10−16 cm−1 (long dashed curve).
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differences as compared to the stiff and radiation fluid stars,
respectively.

E. Bose-Einstein Condensate stars

Due to the superfluid properties of the neutron matter,
some compact astrophysical objects may have a significant
part of their matter content in the form of a Bose-Einstein
condensate [64,70]. The nonrelativistic and Newtonian
Bose-Einstein gravitational condensate can be described
as a gas, whose density and pressure are related by a
barotropic equation of state p ¼ pðρÞ. Generally, the
equation of state of the condensate depends on two physical
parameters, the mass of the condensate particle mc and the
scattering length a [71]. In the case of a condensate with
quartic nonlinearity, the equation of state is polytropic with
index n ¼ 1 [70,71],

pðρÞ ¼ Kρ2; ð69Þ

with

K ¼ 2πℏ2a
m3

c
¼ 0.1856 × 105

�
a

1 fm

��
mc

2mn

�
−3
; ð70Þ

where mn ¼ 1.6749 × 10−24 g is the mass of the neutron.
Compact high density stellar objects having superfluid
cores with particles forming Cooper pairs having masses of
the order of two neutron masses, and scattering length of
the order of 10–20 fm, respectively, can have maximum
masses of the order of 2 M⊙, maximum central density of
the order of 0.1 − 0.3 × 1016 g=cm3, and minimum radii in
the range of 10–20 km [70]. In the dimensionless variables
introduced in Eq. (46) the equation of state (69) takes the
dimensionless form

PðθÞ ¼ kθ2; ð71Þ

where k ¼ Kρc=c2.
The global properties of the Bose-Einstein condensate

stars in the hybrid metric-Palatini gravity theory have been
obtained by numerically integrating the star’s structure
equations (32), (38) and (39), and (48)–(50), respectively,
for the index n ¼ 1 polytropic equation of state. We have
adopted the same values for the parameters μ and ξ of the
Higgs potential as in the case of the stiff, radiation fluid and
quark stars, respectively. For the mass of the condensate
particle, we have adopted the value mc ¼ mn. In each
case the numerical integration stops at ρ ¼ ρc=60. The
central density varies in the range 2.1 × 1013 and
6.43 × 1015 g=cm3 for all cases. In order to compare the
global structure of the Boae-Einstein condensate stars in
both hybrid metric-Palatini gravity and general relativity,
we have also obtained, and presented, the corresponding
numerical solution of the standard general relativistic
structure equations (57) and (58). The comparative mass-

radius relations for Bose-Einstein condensate stars in
general relativity and hybrid metric-Palatini gravity are
presented in Fig. 7.
The maximum masses obtained for the considered

range of parameters are Mmax ¼ 2.003 M⊙, Mmax ¼
2.070 M⊙, Mmax ¼ 2.115 M⊙, Mmax ¼ 2.167 M⊙, and
Mmax ¼ 2.231 M⊙, respectively.
In order to integrate the dimensionless set of structure

equations for the Bose-Einstein condensate stars, we have
adopted the initial conditions θð0Þ ¼ 1, Meffð0Þ ¼ 0,
Φð0Þ ¼ 0.27, and where ðdΦ=dηÞjη¼0 is a function depend-
ing on Φð0Þ, the potential parameters and the central
pressure. We have fixed the value of the coefficient k in
the polytropic equation of state as k ¼ 0.10, The variations
with respect to the dimensionless radial coordinate η of the
scalar field Φ and of the Higgs type potential of the scalar
field for Bose-Einstein condensate stars are depicted
in Fig. 8.
The matter pressure (or, equivalently, the energy density)

vanishes on the star’s surface, which gives the condition
θðηSÞ ¼ 0, for the determination of the dimensionless
radius of the star ηS. The scalar field inside the star,
presented in Fig. 8, has a complex behavior, strongly
dependent on the parameters of the Higgs potential. For the
first set of numerical parameters, Φ is an increasing
function inside the star, while for the next parameter values
it is a decreasing function of η. Similarly to the case of the
quark stars, inside the Bose-Einstein condensate stars
the scalar field does not vanish on the star’s surface
for the adopted values of the parameters of the Higgs
potential. The scalar field potential presents also a complex
evolution pattern, with negative values inside the star,
and an increasing/decreasing behavior determined by the

FIG. 7. Mass-radius relation for Bose-Einstein condensate stars
in hybrid metric-Palatini gravity theory, for μ ¼ 10−5 cm−1,
ξ ¼ 8.5 × 10−10 cm−2, Φ0ð0Þ ¼ −1.8 × 10−16 to −5.7 ×
10−16 cm−1 for the range of the considered central densities,
and for different values of Φð0Þ: Φ≡ 0 (standard general
relativistic limit) (solid curve), Φð0Þ ¼ 0.05 (dotted curve),
Φð0Þ ¼ 0.08 (short dashed curve), Φð0Þ ¼ 0.11 (dashed curve),
and Φð0Þ ¼ 0.14 (long dashed curve).
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numerical values of the parameters μ and ξ. For the
considered range of parameter values the scalar field
potential does not vanish on the surface.
For the adopted range of the physical parameters of the

Higgs type potential, the Bose-Einstein condensate stars are
less massive in both standard GR and hybrid metric-
Palatini gravity, as compared to the stiff, radiation fluid
and quark stars, respectively. However, similarly to all
previous cases, Bose-Einstein condensate hybrid metric-
Palatini stars are more massive than their general relativistic
analogues, but the difference is significantly reduced.
Hence, the global structure of the Bose-Einstein condensate
stars in both standard GR and hybrid metric-Palatini gravity
show again significant differences with respect to the stiff
and radiation fluid stars, as well as with the quark stars.

V. STELLAR MODELS WITH FIXED
FUNCTIONAL FORMS OF THE SCALAR FIELD

As a first example of a stellar model in hybrid metric-
Palatini gravity in which the form of the scalar field is
initially given, we consider the case in which the scalar
field Φ satisfies the differential equation

fðΦðηÞÞ ¼ d2Φ
dη2

þ 1

4

�
1þ 3

1 − eΦ

��
dΦ
dη

�
2

¼ 0: ð72Þ

Equation (72) has two solutions, given by

Φ ¼ Φ0 ¼ constant ð73Þ

and

Φ ¼ ln ½1þ ðαηþ βÞ4�; ð74Þ

respectively, where

α ¼ 1

4

eΦ0

ðeΦ0 − 1Þ3=4Φ
0
0; β ¼ ðeΦ0 − 1Þ1=4; ð75Þ

and Φ0 ¼ Φð0Þ, Φ0
0 ¼ ðdΦ=dηÞjη¼0. In the following we

consider these two functional forms of Φ, and we inves-
tigate the physical and geometrical properties of the
corresponding stellar models.

A. Effective quark star models-the case Φ= constant

In the case Φ ¼ constant the generalized dimensionless
Klein-Gordon equation Eq. (50) reduces to the following
relation between the matter density and thermodynamic
pressure:

P ¼ 1

3
ðθ − 4BΦÞ; ð76Þ

where

−4BΦ ¼ eΦ0

�
uðΦÞ − duðΦÞ

dΦ

�				
Φ¼Φ0

: ð77Þ

Interestingly enough, the equation of state (76) has the
same form as the MIT bag model equation of state
describing quark matter, where B represents the bag
constant [65]. Hence, in the present approach BΦ can be
interpreted as an effective bag constant, induced by the
hybrid metric-Palatini gravitational theory. In this case the
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FIG. 8. Variation of the dimensionless scalar fieldΦ (left) and of the Higgs type potential u (right) for a Bose-Einstein condensate star
in the hybrid metric-Palatini gravity theory for different values of the potential parameters μ and ξ: μ ¼ 1.05, ξ ¼ 1.15 (solid curve),
μ ¼ 2.05, ξ ¼ 1.25 (dotted curve), μ ¼ 3.05, ξ ¼ 1.35 (short dashed curve), μ ¼ 4.05, ξ ¼ 1.45 (dashed curve), and μ ¼ 5.05, ξ ¼ 1.55
(long dashed curve). The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are
θð0Þ ¼ 1, Meffð0Þ ¼ 0, Φð0Þ ¼ 0.27, while the central values of the derivative of the potential, corresponding to different values of
the potential parameters μ0 and ξ0 are ðdΦ=dηÞjη¼0 ¼ 1.02 × 10−5 (solid curve), ðdΦ=dηÞjη¼0 ¼ −1.46 × 10−5 (dotted curve),
ðdΦ=dηÞjη¼0 ¼ −5.55 × 10−5 (short dashed curve), ðdΦ=dηÞjη¼0 ¼ −1.12 × 10−4 (dashed curve), and ðdΦ=dηÞjη¼0 ¼ −1.85 × 10−4

(long dashed curve). For the coefficient k in the polytropic equation of state, we have adopted the value k ¼ 0.1.
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mass continuity and the hydrostatic equilibrium equations
become

dMeff

dη
¼ η2

2
e−Φ0ðθ þ B0Þ; ð78Þ

dθ
dη

¼ −
2e−Φ0ðθ − BÞðθ − αÞη2 þ 3Meff=η

3ηð1 − 2Meff=ηÞ
; ð79Þ

where B0 ¼ eΦ0uðΦ0Þ=2 and α ¼ 4BΦ þ B0. In the fol-
lowing we consider that the scalar field potential is
of Higgs type, and, moreover, we assume that for a stable
configuration, the scalar field is in a potential mini-
mum, so that dVðϕÞ=dϕjϕ¼ϕ0

¼ 0, giving ϕ0 ¼ �μ=
ffiffiffi
ξ

p
and Vðϕ0Þ ¼ −μ4=4ξ.
Hence, eΦ0 ¼ 1þ ϕ0 ¼ 1� μ=

ffiffiffi
ξ

p
, and UðΦÞjϕ¼ϕ0

¼
e−ΦVðeΦ − 1Þjϕ¼ϕ0

¼ V=ð1þϕ0Þ ¼ −ðμ4=4ξÞð1� μ=
ffiffiffi
ξ

p Þ,
and we obtain BΦ ¼ a2ðμ4=4ξÞ ¼ c2μ4=32πG0ρcξ, B0 ¼
−a2ðμ4=2ξÞ ¼ −2BΦ, and θ0 ¼ 10BΦ.
The mass-radius relation of the hybrid metric-Palatini

star with a constant scalar field are presented for different
values of the effective bag constant BΦ in Fig. 9. In each
case the integration stops at ρ ¼ 4 × 1014 g=cm3, so that
the general relativistic quark star described by the MIT bag
model matches the known curve. Central density was
varied between 4.1 × 1014 and 8.5 × 1015 g=cm3. The
maximum masses obtained for the adopted set of param-
eters are Mmax ¼ 2.025 M⊙, Mmax ¼ 1.608 M⊙, Mmax ¼
1.663 M⊙, Mmax ¼ 1.770 M⊙, and Mmax ¼ 1.632 M⊙,
respectively.
The effective hybrid metric-Palatini quark star model

was compared with the general relativistic quark star
model. The maximum mass of the hybrid metric-Palatini
gravity “analogue” quark star is much lower than the mass

of the ordinary general relativistic quark star, with the
constant scalar field in the minimum of the Higgs potential
not giving a significant contribution to the gravitational
properties of the system. Of course this conclusion is
strongly dependent on the numerical values of the model
parameters. By modifying the numerical values of the
constant scalar field, “analogue” quark star models with
different global properties can be constructed.

B. The case Φ= ln ½1þ ðαηþ βÞ4�
By adopting for the scalar field Φ the functional form

given by Eq. (74), it follows that the structure equations
describing the interior of a hybrid metric-Palatini gravity
star take the form

dMeff

dη
¼ −

24αMeffðαηþ βÞ3 − η½16αðαηþ βÞ3 þ 2ηθ þ ηuððαηþ βÞ4 þ 1Þ�
4½ð3αηþ βÞðαηþ βÞ3 þ 1� ; ð80Þ

dθ
dη

¼ −
θf12Meff ½ð3αηþ βÞð7αηþ βÞðαηþ βÞ2 þ 1� þ η2½−24αð5αηþ 2βÞðαηþ βÞ2 þ 2ηθ − 3ηuððαηþ βÞ4 þ 1Þ�g

3ηðη − 2MeffÞ½ð3αηþ βÞðαηþ βÞ3 þ 1� ;

ð81Þ

du
dη

¼ 4ðη − 2MeffÞðαηþ βÞ
η½ðαηþ βÞ4 þ 1�2

�
−12α2 þ ηuðαηþ βÞ2½ðαηþ βÞ4 þ 1�

η − 2Meff
þ 3αðαηþ βÞ
ηθðη − 2MeffÞ½ð3αηþ βÞðαηþ βÞ3 þ 1�

×

�
2η3θ2 þ η½η − 2Meff �½ð3αηþ βÞðαηþ βÞ3 þ 1� dθ

dη
þ θ½ðαηþ βÞ4 þ 1�ð−8ηþ 12Meff þ η3uÞ

��
; ð82Þ

where to describe the dense matter of the star, we have adopted the radiation fluid equation of state P ¼ θ=3. In order to
integrate the system of equations (80)–(82), we need to impose the boundary conditionsMeffð0Þ ¼ 0, θð0Þ ¼ 1, uð0Þ ¼ u0,
and θðηSÞ ¼ 0, respectively. In the dimensional physical coordinates we represent the scalar field as

FIG. 9. Mass-radius relation for hybrid metric-Palatini gravity
stars for a constant scalar field, for μ ¼ 10−5 cm−1,
ξ ¼ 8.5 × 10−10 cm−2, and for different values of Φ: Φ≡ 0
(standard general relativistic quark star model) (solid curve),Φ ¼
0.35 (dotted curve), Φ ¼ 0.4 (short dashed curve), Φ ¼ 0.45
(dashed curve), and Φ ¼ 0.50 (long dashed curve).
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ΦðrÞ ¼ ln ½1þ ðArþ CÞ4�: ð83Þ

The mass-radius relation for hybrid metric-Palatini
gravity stars with the scalar field given by Eq. (83) is
depicted in Fig. 10. In the numerical computations
we have fixed the value of A as A ¼ 100 cm−1, while C
was fixed from the initial conditionΦð0Þ ¼ Φ0. The central
density was varied between 0.049 and 0.729. The numeri-
cal values of the maximum masses obtained for this set of
parameters are Mmax ¼ 2.027 M⊙ (standard general rela-
tivistic model), Mmax ¼ 2.013 M⊙, Mmax ¼ 2.206 M⊙,
Mmax¼2.419M⊙, Mmax¼2.655Mjodot, and Mmax ¼
2.916M⊙, respectively.

The variations with respect to η of the scalar field
potential u, as well as the variation of u with respect to
phi are shown in Fig. 11.
As is transparent from Fig. 10, the hybrid-metric

Palatini stars with the scalar field of the form Φ ¼
ln ½1þ ðαηþ βÞ4� are more massive than their general
relativistic counterparts. There is a significant effect of
the variation of the scalar field parameters on the effective
mass Meff of the star. A small variation in the numerical
values of α and β determines an important change in the
mass of the star. The corresponding masses and radii are
also much bigger than those of the general relativistic fluid
stars, with masses of the order of two solar masses. The
behavior of the scalar field potential u, depicted in Fig. 11,
is also strongly dependent on the numerical values of α and
β. For small values of α, the potential is practically constant
inside the star, and it takes only positive values. With the
increase of α, the potential becomes a monotonically
decreasing function of the radial coordinate, also changing
sign inside the star. As a function of Φ, the potential shows
a similar behavior, becoming a decreasing function taking
negative values outside a small stellar core.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have investigated the global
physical properties of dense compact objects in the hybrid
metric-Palatini gravity, which combines elements of the
metric and Palatini fðRÞ theories, and attempts to explain
the gravitational phenomena on both local and large scales
through a single formalism. An important feature of the
theory is the possibility of a scalar-tensor type formulation,
which we have used to study the interior of stellar type
objects. However, it is important to stress that the gravi-
tational action of the theory differs fundamentally from the

FIG. 10. Mass-radius relation for hybrid metric-Palatini gravity
stars for the scalar field ΦðrÞ ¼ ln ½1þ ðArþ BÞ4�, for
A ¼ 100 cm−1, Uð0Þ ¼ 10−3 cm−2, and for different values of
Φð0Þ: Φð0Þ ¼ 2.0 (dotted curve), Φð0Þ ¼ 2.1 (short dashed
curve), Φð0Þ ¼ 2.25 (dashed curve), and Φ ¼ 2.3 (long dashed
curve). The solid curve represents the standard general relativistic
radiation fluid star model.
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FIG. 11. Variation of the scalar field potential u as a function of η (left) and of the scalar field potential u as a function ofΦ (right) for a
hybrid metric-Palatini gravity star with Φ ¼ ln½1þ ðαηþ βÞ4�, for different values of the parameters α and β: α ¼ 0.03, β ¼ 0.15 (solid
curve), α ¼ 0.05, β ¼ 0.15 (dotted curve), α ¼ 0.07, β ¼ 0.15 (short dashed curve), α ¼ 0.09, β ¼ 0.10 (dashed curve), and α ¼ 0.11,
β ¼ 0.05 (long dashed curve). The dot-dashed curve represents the solution of the structure equations for the radiation fluid star in
standard GR. The initial conditions used to numerically integrate the hybrid metric-Palatini gravity structure equations are θð0Þ ¼ 1,
Meffð0Þ ¼ 0 and uð0Þ ¼ 0.15,
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Brans-Dicke type action, due to the coupling between the
scalar field and the geometry. This coupling generates in
static spherically symmetry a rather complicated set of
interior field equations, whose solutions can be found only
through the intensive use of numerical methods. As a first
step in our study, we have derived the basic equations
describing the structure of compact objects in hybrid
metric-Palatini gravity, namely, the mass continuity equa-
tion, the generalized hydrostatic equilibrium equation, and
the generalized Klein-Gordon equation, describing the
coupling of the scalar field with curvature and matter.
An important physical parameter determining the proper-
ties of the stars is the self-interaction potential V of the
equivalent scalar field. In the present study we have
assumed that the potential is of the Higgs type, a choice
which is supported by the role such potentials play in
elementary particle physics. Other functional forms of the
potential (exponential, hyperbolic, power-law etc.) can also
be adopted, and they will lead to compact objects having
different global properties as compared to those analyzed in
this work.
Once the scalar field potential is specified, in order to

close the system of structure equations of the star we need
to specify either the functional form of the scalar field or the
equation of state of the dense matter. In the framework of
the first approach we have investigated two types of
solutions of the field equations. In the first case, we have
assumed that the scalar field is in the minimum of the Higgs
potential and assumes a constant value. Interestingly
enough, this assumption fixes, via the Klein-Gordon
equation, the equation of state of the star’s matter, which
takes the form of the MIT bag model equation of state,
which was extensively used to describe the properties of the
quark stars. From a simple physical point of view, the bag
constant forces the quarks to confine into a spherical
region of space, with a radius, r ¼ a, so that the potential
VðrÞ ¼ 0 for r < a, with the vacuum pressure B on the bag
wall equilibrating the pressure of quarks and thus stabiliz-
ing the hadron. Several mechanisms have been proposed
for the formation of quark stars. One possible scenario is
that they may form during the collapse of the core of a
massive star after the supernova explosion [64]. Such an
explosion may trigger a first or second order phase
transition, thus leading to the formation of deconfined
quark matter. It has also been pointed out that the core of
proto-neutron or neutron stars is a favorable environment
for the conversion of neutron matter to quark matter [69].
Neutron stars in low-mass X-ray binaries can also accrete
enough cosmic matter to undergo a phase transition to
become quark stars [69]. Hence, the possibility that in
hybrid metric-Palatini gravity a phase transition, triggered
by the scalar field with Higgs type self-interaction poten-
tial, can take place under extreme astrophysical and
gravitational conditions (supernova explosions, gamma-
ray bursts, accretion etc.) cannot be ruled out. If such a

phase transition does occur, the star ends in a minimum of
the Higgs potential as a “true” or “analogue” quark star.
For a given equation of state of the dense matter, we have

investigated, by numerically integrating the structure equa-
tions of the star, four classes of models, corresponding to
the stiff fluid, radiation fluid, quark matter and Bose-
Einstein condensate superfluid phase, respectively. In all of
these cases we have effectively constructed the hybrid
metric-Palatini gravity model of the star and compared it to
its general relativistic counterpart. Our analysis shows that
for all these four equations of state the hybrid metric-
Palatini gravity stars are much more massive than their
standard general relativistic counterparts. For example, for
the stiff fluid equation of state, hybrid metric-Palatini stars
are about five times heavier than the general relativistic
stars. The same central density quark stars have around two
times bigger masses, while superfluid Bose-Einstein
Condensate stars are around 1.4 four times more massive.
Of course the mass of the star is strongly dependent on its
central density, and high central density stars have lower
gravitational masses. But the large mass spectrum of the
hybrid metric-Palatini stars raises the possibility that stellar
mass black holes, with masses in the range of 3.8 M⊙ and
6 M⊙, respectively, could be in fact hybrid metric-Palatini
stars (such a possibility was investigated in [72] for the case
of the quarks stars in the color-flavor locked phase). A
comparison of the maximummasses of stellar objects in the
hybrid-metric Palatini gravity and of the standard general
relativistic values is presented in Table I.
Many stellar mass black hole candidates have been found

recently, with at least seven of them having masses greater
than 5 M⊙. Presently, at least 20 stellar mass black holes
have been detected, with masses between 3.8 and 6 solar
masses. However, astronomical estimations give the total
number of stellar mass black holes (isolated and in binaries)
in our Galaxy only to be of the order of 100 millions (see
[72] and references therein). Therefore the possibility that
stellar mass black holes could be ordinary stars dominated

TABLE I. Comparison between the maximum general relativ-
istic MGR

max=M⊙ and hybrid metric-Palatini MHMP
max =M⊙ masses

obtained for the four equations of state considered in the present
study. The parameters of the Higgs type potential used to
numerically integrate the hybrid metric-Palatini structure equa-
tions are μ ¼ 10−5 cm−1 and ξ ¼ 8.5 × 10−10 cm−2, and
Φð0Þ ¼ 0.30 cm−1. Here, ðdΦ=drÞjr¼0 is a function of Φð0Þ,
of the potential parameters and of the central densities and
pressures. For the MIT bag model and BEC equations of state, the
maximum mass occurs at the point of minimum central density.

Equation of state Φð0Þ MGR
max=M⊙ MHMP

max =M⊙
MIT bag model 0.30 2.025 4.359
Stiff fluid 0.30 3.279 3.968
Radiation fluid 0.30 2.256 3.660
BEC 0.30 2.230 4.971
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by modified gravity effects cannot be ruled out. Hybrid
metric-Palatini stars may have higher masses than standard
neutron stars, and thus, they may be possible stellar mass
black hole candidates. A possibility of distinguishing
hybrid metric-Palatini stars from standard general relativ-
istic stellar mass black holes could be through the study of
the astrophysical properties of the thin accretion disks
around rapidly rotating hybrid metric-Palatini stars and
Kerr type black holes. For such a case, we expect that the
radiation properties of the accretion disks around general
relativistic black holes and modified gravity stars may be
different [73]. Hence, the emission properties of the
accretion disk, and of the stars themselves, may be the
key signature to differentiate modified gravity stars from
ordinary black holes.
High precision observations of the neutron star mass

distribution have also confirmed the existence of neutron
stars with masses of the order of 2 M⊙ [42–44]. One
example of such a star is the Black Widow Pulsar
B1957þ 20, an eclipsing binary millisecond pulsar, with
the mass estimated to be in the range 1.6–2.4 M⊙ [74].
However, a range of 2–2.4 solar masses are very difficult
to explain by the standard neutron matter models in the
framework of GR, including exotic models like quark
or kaon stars. However, these stellar mass values could
be easily explained once we model them as hybrid

metric-Palatini gravity stars. Indeed, a hybrid metric-
Palatini star exhibits a very complex internal structure,
associated with an equally complex stellar dynamics. This
is mainly due to the presence of the coupling between the
scalar field, geometry and matter. These effects can lead to
a number of distinctive astrophysical signatures, which still
can make their observational detection to be an extremely
difficult task. The possible astrophysical/observational
relevance of the hybrid metric-Palatini stars will be con-
sidered in a future publication.
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