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1 Introduction

The study of the existence of solutions to the Navier-Stokes equations can be made
demanding only that the basis functions generate a complete subspace in a suitable
space of functions, see Kiselev and Ladyzehnskaya [17], Heywood [9] or the classical
books of Ladyzhenskaya [19], Lions [20] or Temam [41]. To obtain refinements in the
theory, particularly those concerning the regularity and decay, an appropriate choice
of the base generally is required. For example, the eigenfunctions of Stokes operator
associated with the problem could be taken.

An interesting question from the point of view of theoretical and numerical analysis
is to determine the convergence rates in several norms of the difference between
the exact solution and Galerkin approximations. This was done by Rautmann [26].
These error estimates are local in the sense that they depend on functions that grow
exponentially with time. Rautmann obtained the optimal convergence rate in the H1-
norm, but he only improved L2-error estimateswhen comparedwith the trivial one that
derives directly from the H1-estimate. The optimal convergence rate in the L2-norm
was obtained by Salvi [38] (see also [31]).We pointed that higher-order error estimates
is a difficult question because, as it was observed by Heywood and Rannacher [10],
they depend on non-local compatibility conditions for the data at time t = 0, which
cannot be verified in practice. In this direction Rautmann [27] studied how smooth
a Navier-Stokes solution can be at time t = 0 without any compatibility condition
mentioned above (see also Temam [42] for other formulation of the compatibility
condition). By using this, Rautmann [28] proves an error estimate in the H2-norm.
This is the best estimate thatwemay expectwithout any assumptions about the stability
of the solution being approximated (see [8]). For the classicalNavier-Stokes equations,
assuming uniform boundedness in time of the L2-norm of the gradient of the velocity
and exponential stability in theDirichlet norm of the solution, optimal uniform-in-time
error estimates for the velocity in the Dirichlet norm were derived in [8]. An optimal
uniform-in-time error estimate for the velocity in the L2 norm was derived in [38],
also for the classical Navier-Stokes equations, assuming exponential stability in the L2

norm. Rojas-Medar and Boldrini [31] proved uniform in time optimal error estimates
for the spectral Galerkin approximations in the H1 and L2 norms, considering the
external force field has a mild form of decay, without explicitly assuming the L2 (or
H1)-exponential stability (this being in general difficult to verify).

An extension to the more practical finite-element approximations was analyzed
intensively by Heywood and Rannacher in a series of beautiful papers [10–13], see
also the paper of Bause [2] and the references therein.

We point that the exact knowledge of the eigenfunctions of the Stokes operator is
possible in certain domains, see [36,37]. Moreover, the asymptotic behaviour of the
eigenvalues is well known, see [16] and the references therein.

In this work, we want to study the convergence rates for the spectral Galerkin
approximations for the heat convection equations, also called Boussinesq equations
or Oberbeck-Boussinesq. We recall the results given in the works [32–34], where
the existence, regularity and uniqueness of solutions are established by means of the
spectral Galerkin method and the estimates for Galerkin approximations necessary
for our future arguments, see also [18,23,24]. Other techniques utilized in the study
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of these equations are semigroups [7,30], hydrodynamic potentials [3,39], iterative
methods [22], for instance.

Analogous convergence rates to those given by Rautmann [26] and Boldrini and
Rojas-Medar [31] were derived in the work [35] for a system more general than that
of Boussinesq’s. Analogous results to those of Heywood [8] were given in [4] for the
Boussinesq model. We recall these results in Sect. 2 since they will be used in this
paper.

We observe that the main results given in [43] are not new (Theorem 3.1 in [43] was
established in [35]). The Theorem 3.2 in [43] is not optimal, they set strong conditions
on the external forces and assume null initial conditions (see Rautmann [28]).

In this work, we extend the results by Rautmann [27,28] to the Boussinesq system;
we prove the pointwise convergence rate in the H2-norm for the velocity and tempera-
ture. Moreover, the pointwise convergence rate in the L2-norm for the time-derivative
of velocity and temperature is obtained. The innovation of our results is again, that we
do not need impose compatibility conditions on the initial data.

As it is usual in this context, to simplify the notation, we will denote by C generic
finite positive constant depending only on Ω and the other fixed parameters of the
problem (like the initial data) that may have different values in different expressions.

2 Preliminaries

The following equations describe the heat convection motion of a fluid in a bounded
domain Ω ⊂ R

N , N = 2 or 3, with smooth boundary, in the time interval [0, T ),
0 ≤ T ≤ ∞, considering the Oberbeck-Boussinesq approximation (see Joseph [15]):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t

+ (u · ∇)u − νΔu + ∇ p = j + θ g,

div u = 0,
∂θ

∂t
+ u · ∇θ − kΔθ = f.

(1)

Here u(t, x) ∈ R
N , θ(t, x) ∈ R, and p(t, x) ∈ R denote respectively the unknowns

velocity, temperature and pressure of a liquid at a point x ∈ Ω at time t ∈ [0, T ). The
constants ν and k are respectively, the kinematic viscosity and thermal conductivity.
The gravitational field, g(t, x), the coefficient of volume expansion, j(t, x), and the
source function f (t, x) are given.We have considered the coefficient of viscosity and
thermal conductivity equal to 1, without loss of generality.

On the boundary Γ , we assume that

u(t, x) = 0, θ(t, x) = θ1, (2)

where θ1 is a known function, and the initial data conditions are expressed by

u(0, x) = u0(x), θ(0, x) = θ0(x), (3)

where u0 and θ0 are given functions on the variable x ∈ Ω .
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To simplify the analysis, we consider ν = 1, k = 1, and θ1 = 0. The nonhomoge-
neous case θ1 �= 0, can be treated by using an appropriate lifting and only the obvious
changes should be required in the statement of the results.

The expressions ∇,Δ and div denote the gradient, Laplacian and divergence oper-

ators, respectively (we also denote
∂u
∂t

by ut ); the i th component of u · ∇u is given

by [(u · ∇)u]i = ∑
j u j

∂ui
∂x j

and u · ∇θ = ∑
j u j

∂θ
∂x j

.
We will consider the usual Sobolev spaces

Wm,q(D) = { f ∈ Lq(D), ||∂α f ||Lq (D) < +∞, |α| ≤ m},

m = 0, 1, 2, . . . , 1 ≤ q ≤ +∞, D = Ω or Ω×]0, T [, 0 < T < +∞, with
the usual norm. When q = 2, we denote by Hm(D) = Wm,2(D) and Hm

0 (D) =
closure of C∞

0 (D) in Hm(D). The Lq -norm is denoted by ‖ · ‖p. When q = 2, the
L2-norm is denoted by ‖ · ‖ and the associated inner product in L2(Ω) by (·, ·). If
X is a Banach space, we denote by Lq(0, T ; X) the Banach space of the X -valued
functions defined in the interval [0, T ] that are Lq -integrable in the sense of Bochner.
In addition, boldface letters will be used for vectorial spaces.

We shall consider the following spaces of divergence free functions

C∞
0,σ (Ω) = {v ∈ C∞

0 (Ω)| div v = 0 in Ω},
H = closure of C∞

0,σ (Ω) in L2(Ω),

V = closure of C∞
0,σ (Ω) in H1(Ω).

Throughout the paper, P denotes the orthogonal projection from L2(Ω) into H
and A = −PΔ with D(A) = V ∩ H2(Ω) is the usual Stokes operator.

We will denote by wn(x) and λn the eigenfunctions and eigenvalue of A. It is
well know that {wn}∞n=1 form an orthogonal complete system in the spaces H, V
and H2(Ω) ∩ V , with their usual inner products (u, v), (∇u,∇v) and (Au, Av)

respectively.
We observe that for the regularity of the Stokes operator, it is usually assumed that

Ω is of class C3; this being in order to use Cattabriga’s results [5]. However, we use
the stronger results of Amrouche and Girault [1], which implies, in particular, that
when Au ∈ L2(Ω), then u ∈ H2(Ω) and ‖u‖H2 and ‖Au‖ are equivalent norms
when Ω is of class C1,1.

For each n ∈ N, we denote by Pn the orthogonal projections from L2(Ω) onto
V n = span{w1(x), . . . ,wn(x)}. For more details on the Stokes operator see Temam
[41].

Similar considerations are true for the Laplacian operator B = −Δ : D(B) →
L2(Ω)with theDirichlet boundary conditions with domain D(B) = H1

0 (Ω)∩H2(Ω)

and we will denote by ωn(x), γn the eigenfunctions and eigenvalues of B. Also we
denote Hn = span {ω1(x), . . . , ωn(x)} and Rn the orthogonal projections from L2(Ω)

onto Hn .We can rewrite the problem (1) by using the orthogonal projectionP as follows
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⎧
⎨

⎩

ut + Au + P(u · ∇u) = P( j + θ g),

θt + Bθ + u · ∇θ = f,
u(0) = u0, θ(0) = θ0,

(4)

which is equivalent to the weak form

⎧
⎨

⎩

(ut , v) + (u · ∇u, v) + (∇u,∇v) = ( j , v) + (θ g, v) ∀ v ∈ V ,

(θt , ρ) + (u · ∇θ, ρ) + (∇θ,∇ρ) = ( f, ρ) ∀ρ ∈ H1
0 (Ω),

u(0) = u0, θ(0) = θ0.

(5)

The spectral Galerkin approximations for (u, θ) are defined for each n ∈ N as the
solution (un, θn) ∈ C2([0, T ]; V n) × C2([0, T ]; Hn) of

⎧
⎨

⎩

(unt , v) + (un · ∇un, v) + (∇un,∇v) = ( j , v) + (θn g, v) ∀ v ∈ Vn,
(θnt , ρ) + (∇θn,∇ρ) + (un · ∇θn, ρ) = ( f, ρ) ∀ρ ∈ Hn,

un(x, 0) = Pnu0(x), θn(x, 0) = Rnθ0(x), x ∈ Ω.

(6)

By using these approximations Rojas-Medar and Lorca [32] have proved the fol-
lowing result:

Theorem 1 Let Ω be a bounded domain in R
N with boundary Γ of class C1,1.

Suppose that

(u0, θ0) ∈ V × H1
0 (Ω), (7)

j ∈ L2(0, T ; L2(Ω)), g ∈ L2(0, T ; L3(Ω)), f ∈ L2(0, T ; L2(Ω)). (8)

Then, there exists T0 > 0 with T0 ≤ T such that the problem (1) has a unique solution
in the interval [0, T0). This solution belongs to C([0, T0); V ) × C([0, T0); H1

0 (Ω)).

Moreover, the approximations of spectral Galerkin satisfy the following estimates
uniform in n

‖∇un(t)‖2 + ‖∇θn(t)‖2 ≤ C, (9)
∫ t

0
(‖Aun(τ )‖2 + ‖Bθn(τ )‖2) dτ ≤ C, (10)

∫ t

0
(‖unt (τ )‖2 + ‖θnt (τ )‖2) dτ ≤ C. (11)

With stronger assumptions on the initial values and the external fields, we are able
to prove the following theorem:

Theorem 2 Under the hypotheses of Theorem 1, if moreover the forces satisfy

F1(t) =
∫ T

0
(‖gt (s)‖2 + ‖ j t (s)‖2 + ‖ ft (s)‖2)ds < +∞

and the initial data u0 ∈ D(A), θ0 ∈ D(B) then, the solution (u, θ) obtained in Theo-
rem 1 belongs to C([0, T0]; D(A)×D(B))∩C1([0, T0]; H×(L2(Ω))). Furthermore,
the approximations un, θn satisfy

123



B. Climent-Ezquerra et al.

‖unt (t)‖2 + ‖θnt (t)‖2 ≤ C, (12)

‖Aun(t)‖2 + ‖Bθn(t)‖2 ≤ C, (13)
∫ t

0
‖∇unt (τ )‖2 + ‖∇θnt (τ )‖2dτ ≤ C. (14)

Remark 1 Moreover, it was proved in [34] the global existence and uniqueness of
strong solutions. We note that it achieves the same results as in the case of classical
Navier-Stokes equations, i.e., without smallness of the forces and initial data for n = 2,
and smallness if n = 3.

In the work [35] the following optimal results were proved for the rate of conver-
gence in the L2 and H1-norms.

Theorem 3 Suppose the assumptions of the Theorem 2 hold. Then, the approximation
un and θn satisfies

‖u(t) − un(t)‖2 + ‖θ(t) − θn(t)‖2

+
∫ t

0
(‖∇u(s) − ∇un(s)‖2 + ‖∇θ(s) − ∇θn(s)‖2) ds

≤ C

(
1

λ2n+1

+ 1

γ 2
n+1

)

. (15)

‖∇u(t) − ∇un(t)‖2 + ‖∇θ(t) − ∇θn(t)‖2

+
∫ t

0
(‖ut (s)−unt (s)‖2+‖θt (s) − θnt (s)‖2) ds ≤ C

(
1

λn+1
+ 1

γn+1

)

. (16)

‖ut (t) − unt (t)‖2V∗ + ‖θt (t) − θnt (t)‖2H−1 ≤ C

(
1

λn+1
+ 1

γn+1

)

. (17)

‖Au(t) − Aun(t)‖2V∗ + ‖Bθ(t) − Bθn(t)‖2H−1 ≤ C

(
1

λn+1
+ 1

γn+1

)

. (18)

3 The main result

From now on, for simplicity of notation, we will write T0 ≡ T .

Theorem 4 Under the assumptions of Theorem 2, if moreover g, j ∈ C([0, T ],
H1(Ω)), f ∈ C([0, T ], H1(Ω)) and u0 ∈ D(A1+ε), θ0 ∈ D(B1+ε) with ε ∈ (0, 1

4 ),
then,

‖Au(t) − Aun(t)‖ + ‖ut (t) − unt (t)‖ ≤ C

[
C(ε)

λε
n+1

+
(

1

λn+1
+ 1

γn+1

)1/2
]

, (19)

‖Bθ(t) − Bθn(t)‖ + ‖θt (t) − θnt (t)‖ ≤ C

[
C(ε)

λε
n+1

+ 1

γ ε
n+1

+
(

1

γn+1
+ 1

γn+1

)1/2
]

.

(20)
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4 Technical results

In the following, we will use fractional powers Aα and Bα defined for any real α by
means of the spectral representation of A and B respectively, (see [40] for the Stokes
operator). On D(Aα), the operator Aα commute with exp(−t A) and analogously for
Bα . The following properties, valid for any strictly positive, self-adjoint operator A
in Hilbert space H, will be used (see [6])

‖Aα exp(−tA)‖ ≤ t−α with t > 0, 0 ≤ α ≤ e. (21)

‖Aα+β exp(−tA)v‖ = ‖Aα exp(−tA)Aβv‖ ≤ t−α‖Aβv‖ (22)

for v ∈ D(Aβ), t > 0 and 0 ≤ α ≤ e.

‖(exp(−tA) − I )v‖≤ tσ

σ
‖Aσ v‖ with v ∈ D(Aσ ), t > 0, 0<σ < 1. (23)

‖(exp(−tA) − I )v‖ −→ 0+ when t → 0, v ∈ H. (24)

The following lemmas will be used below.

Lemma 1 Assume ui ∈ D(A3/4+η) for some η > 0 and vi ∈ D(A) for i = 1, 2.
Then,

‖Aζ P(u2 · ∇v2 − u1 · ∇v1)‖ ≤ C‖A3/4+η(u2 − u1)‖‖Av2‖
+C‖A3/4+ηu1‖‖A(v2 − v1)‖

holds for all ζ ∈ [0, 1/4), the constant C depending only on η and ζ .

This result can be found in [29], Corollary 3.4. In analogous way, the following
lemma can be proved.

Lemma 2 Assume ui ∈ D(A3/4+η) for some η > 0 and θi ∈ D(B) for i = 1, 2.
Then,

‖Bζ R(u2 · ∇θ2 − u1 · ∇θ1)‖ ≤ C‖A3/4+η(u2 − u1)‖‖Bθ2‖
+C‖A3/4+ηu1‖‖B(θ2 − θ1)‖

holds for all ζ ∈ [0, 1/4), the constant C depending only on η and ζ .

Lemma 3 Let T , C1, and C2 be positive constants and let r be a constant with
0 < r < 1. Then, any continuous positive function f , defined for t ∈ [0, T ], satisfying

f (t) ≤ C1 + C2

∫ t

0
(t − s)−r f (s)ds,

verifies

f (t) ≤ CC1 exp
(
CC1/(1−r)

2 t
)

with a positive constant C, which depends only on r.

123



B. Climent-Ezquerra et al.

This result can be found in [25], Lemma 6.5, and the following lemma in [14], p. 38.

Lemma 4 In a Hilbert space H with inner product 〈·, ·〉 defining the norm |·|H , let A�

be a symmetric operator which has the complete orthonormal system of eigenfunction
(e∗

i ) corresponding to the sequence (λ∗
i ) of eigenvalues 0 < λ∗

1 ≤ λ∗
1 ≤ · · · ≤ λ∗

i →
∞ with i → ∞. then the error estimate

| f −
k∑

i=1

〈 f, e∗
i 〉e∗

i |H ≤ (λ∗
k+1)

−1|A� f |H

holds for any f ∈ D(A�).

We going to prove some results of regularity for the solution obtained in the The-
orems 1 and 2. Firstly, observe that we can write the following representation of the
solution obtained in Theorem 1

u(t) = exp(−At)u0

+
∫ t

0
exp(−(t − s)A)(P( j(s) + θ(s)g(s)) − P(u(s) · ∇u(s)))ds,

θ(t) = exp(−Bt)θ0 +
∫ t

0
exp(−(t − s)B)( f (s) − u(s) · ∇θ(s))ds.

Theorem 5 Suppose that g, j ∈ C([0, T ], H1(Ω)), f ∈ C([0, T ], H1(Ω)) and
u0 ∈ D(A1+ε), θ0 ∈ D(B1+ε), then, the solution (u, θ) of (1) satisfies

u ∈ C([0, T ]; D(A1+ε)) ∩ C1([0, T ]; D(Aε)), (25)

θ ∈ C([0, T ]; D(B1+ε) ∩ C1([0, T ]; D(Bε)), (26)

for 0 ≤ ε < 1/4.

Proof The proof is similar to that of Bause [2] (Theorem 3.11). In fact, it is exactly
equal in the case of the velocity u(t). To the temperature θ , we sketch the main ideas
following [2]
Step 1: If 0 ≤ ε < 1/4 then D(B1+ε) = H2+2ε(Ω) ∩ H1

0 (Ω).
Let v ∈ H2+2ε(Ω) ∩ H1

0 (Ω), then Bv ∈ H2ε(Ω). Since H2ε(Ω) = D(Bε)

(see [2, lemma 3.4]) it follows that v ∈ D(B1+ε). Moreover the injection is compact
because ‖B1+εv‖ ≤ C‖Bv‖2ε ≤ C‖v‖2+2ε. Conversely, if v ∈ D(B1+ε), then v ∈
H2+2ε(Ω) and, using the fact that for the Dirichlet problem (with ∂Ω ∈ Ck+2, k =
0, 1)

−�ψ = g in Ω, ψ |∂Ω = 0,

the solution satisfies ‖ψ‖Hk+2 ≤ C‖g‖Hk , k = 0, 1, (see V. Mikhailov [21], for
instance), we have that ‖v‖2+2ε ≤ C‖Bv‖2ε ≤ C‖B1+εv‖.
Step 2: If 0 ≤ ε < 1/4 then (u · ∇)θ ∈ C([0, T ]; D(Bε))
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Indeed, u ∈ D(A) and θ ∈ D(B) imply that (u · ∇)θ ∈ H1(Ω) and

‖(u · ∇)θ‖H1 ≤ ‖(u · ∇)θ‖ + ‖(∇u · ∇)θ‖ + ‖(u · ∇(∇θ)‖
≤ C(‖u‖∞‖∇θ‖ + ‖∇u‖4‖∇θ‖4 + ‖u‖∞‖θ‖H2)

≤ C‖Au‖‖Bθ‖.

Here, we have used the inequalities

‖v‖4 ≤ C‖∇(∇v)‖3/4‖∇v‖1/4, ‖v‖∞ ≤ C‖v‖H2 ,

‖v‖H2 ≤ C‖Av‖ with v ∈ D(A), ‖v‖H2 ≤ C‖Bv‖ for v ∈ D(B).

Moreover, since H1(Ω) ↪→ H2ε(Ω) is continuous, we get that (u · ∇)θ ∈ D(Bε),
0 ≤ ε < 1/4.

To the continuity of term (u · ∇θ)(t), observe that

‖Bε(u · ∇θ)(t) − Bε(u · ∇θ)(s)‖ ≤ C(‖(u(t) − u(s)) · ∇θ(t)‖H1

+‖u(s) · ∇(θ(t) − θ(s))‖H1)

≤ C((‖Bθ(t)‖ + ‖Au(s)‖)‖A(u(t) − u(s))‖
+‖Au(s)‖‖B(θ(t) − θ(s))‖).

Step 3: If 0 ≤ ε < 1/4 then θ ∈ C([0, T ]; D(B1+ε)).

By applying the operator B1+ε at both side of the integral equation of θ(t), (4), in
the way

B1+εθ(t) = exp(−Bt)B1+εθ0 +
∫ t

0
Bβ exp(−(t − s)B)Bσ ( f (s) − u(s) · ∇θ(s))ds,

where β ∈ (0, 1), σ ∈ (0, 1/4) such that β + σ = 1 + ε, using that ‖B1+εθ0‖ ≤
‖θ0‖2+2ε,

∥
∥Bβ exp(−(t − s)B)Bσ ( f (s) − u(s) · ∇θ(s))

∥
∥

≤ 1

(t − s)β
‖Bσ ( f (s) − u(s) · ∇θ(s))‖

and (21), we deduce that θ(t) ∈ D(B1+ε) for t ∈ [0, T ].
To prove the continuity, similar analysis can be apply to B1+εθ(t + h) − B1+εθ(t)

with h ∈ R, getting, for example for h > 0, the following estimate:

∥
∥
∥B1+εθ(t + h) − B1+εθ(t)‖ ≤ ‖(exp(−hB) − I )B1+εθ0

∥
∥
∥

+
∫ t

0
(t − s)−βhδ(‖ f (s)‖2(δ+σ) + ‖(u · ∇θ)(s)‖2(δ+σ))ds

+
∫ t+h

0
(t + h − s)−β(‖ f (s)‖2σ + ‖(u · ∇θ)(s)‖2σ )ds
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≤ ‖(exp(−hB) − I )B1+εθ0‖ + Ct1−βhδ + Ch1−β.

where δ > 0 is such that δ + σ < 1/4 and σ as above. Here, (22) and (23) are been
used. The case h < 0 can be deal with in a similar way. Take in to account (24), it
follows that θ ∈ C([0, T ]; D(B1+ε)).

Step 4: By using the equation θt + Bθ + u · ∇θ = f, of (4), we obtain that ∂tθ ∈
C([0, T ]; D(Bε)). ��

5 H2-error estimates for the velocity and the temperature

Let u = ∑∞
i=1 Ai (t)wi (x) and θ = ∑∞

i=1 Bi (t)ω
i (x) the eigenfunctions expansion

of u, and θ , respectively. Let vn = Pnu and ρn = Rnθ the n-th partial sums of the
series for u and θ , respectively. Recall that (un, θn), solution of (6), are the spectral
approximations for (u, θ). We define

en = u − vn, εn = θ − ρn, wn = vn − un, ηn = ρn − θn .

To estimate Au − Aun and Bθ − Bθn , we have to estimate Aen , Bεn , Awn and
Bηn .

5.1 Estimates in D(Aα) and D(Bα) , 0 ≤ α < 1

Lemma 5 Let α be such that 0 ≤ α < 1, under the hypotheses of Theorem 2, the
estimates

‖Aαu(t) − Aαvn(t)‖ ≤ C(α + ε)

λε
n+1

, ‖Bαθ(t) − Bαρn(t)‖ ≤ C(α + ε)

γ ε
n+1

hold for any ε > 0 such that 0 < α + ε < 1.

Proof Observe that the operators Aε and Bε commute with Pn and Rn respectively,
for any ε ∈ (0, 1). Since Aε and Bε are again positive definite symmetric operators
in H and L2(Ω), having the eigenvalues λε

n and γ ε
n and the eigenfunctions wn and

ωn , n = 1, 2, . . . respectively, we can apply Lemma 4 for f = Aαu, A� = Aε and
f = Bαθ , A� = Bε respectively, to obtain the above estimates. ��
Theorem 6 Under the conditions stated in the previous theorem we have

‖Aαu(t) − Aαun(t)‖ ≤ C(α + ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

,

‖Bαθ(t) − Bαθn(t)‖ ≤ C(α + ε)

γ ε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

.
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Proof Observe that

vn(t) = exp(−At)Pnu0 +
∫ t

0
exp(−(t − s)A)Pn( j(s) + θ(s)g(s))ds

−
∫ t

0
exp(−(t − s)A)Pn(u(s) · ∇u(s))ds,

un(t) = exp(−At)Pnu0 +
∫ t

0
exp(−(t − s)A)Pn( j(s) + θn(s)g(s))ds

−
∫ t

0
exp(−(t − s)A)Pn(un(s) · ∇un(s))ds,

hence,

wn(t) =
∫ t

0
exp(−(t − s)A)Pn(θ(s) − θn(s))g(s)ds

−
∫ t

0
exp(−(t − s)A)Pn(u(s) · ∇u(s) − un(s) · ∇un(s))ds.

Therefore,

∥
∥Aαwn(t)

∥
∥ ≤

∫ t

0
‖Aα exp(−(t − s)A)‖‖Pn(θ(s) − θn(s))g(s)‖ds

+
∫ t

0
‖Aα exp(−(t − s)A)‖‖Pn(u(s) · ∇u(s) − un(s) · ∇un(s))‖ds.

By (21), we have for all 0 < α ≤ e and t > 0,

‖Aα exp(−(t − s)A)‖ ≤ 1

(t − s)α
, (27)

and by using that ‖v‖L2 ≤ C‖v‖L3‖v‖L6 ≤ C‖∇v‖L2‖v‖H1 for all v ∈ H1, we
obtain that

‖Pn(θ(s) − θn(s))g(s)‖ ≤ ‖θ(s) − θn(s)‖L3‖g(s)‖L6

≤ ‖∇θ(s) − ∇θn(s)‖‖g(s)‖H1

≤ C

(
1

λn+1
+ 1

γn+1

)1/2

‖g‖L∞(H1).

Hence,

∫ t

0
‖Aα exp(−(t − s)A)Pn(θ(s) − θn(s))g(s)‖ds

≤ C

(
1

λn+1
+ 1

γn+1

)1/2

‖g‖L∞(H1)

∫ t

0

1

(t − s)α
ds
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for 0 < α < 1 and t ≤ T . Finally,

∫ t

0
‖Aα exp(−(t − s)A)Pn(θ(s) − θn(s))g(s)‖ds ≤ C

(
1

λn+1
+ 1

γn+1

)1/2

.

On the other hand,

‖Pn(u(s) · ∇u(s) − un(s) · ∇un(s))‖
≤ ‖(u(s) − un(s)) · ∇u(s)‖ + ‖un(s) · ∇(u(s) − un(s))‖
≤ ‖u(s) − un(s)‖L3‖∇u(s)‖L6 + ‖u(s)‖L∞‖∇(u(s) − un(s)‖
≤ C‖∇u(s) − ∇un(s)‖‖Au(s)‖ + ‖Aun(s)‖‖∇u(s) − ∇un(s)‖
≤ C

(
1

λn+1
+ 1

γn+1

)1/2

.

The last inequality is due to (13) and (16). Consequently, for all 0 < α < 1, we obtain
that

∫ t

0
‖Aα exp(−(t − s)A)Pn(u(s) · ∇u(s) − un(s) · ∇un(s))‖ds

≤ C

(
1

λn+1
+ 1

γn+1

)1/2 T 1−α

1 − α
.

Thus, for all 0 < α < 1, we have that

‖Aαwn(t)‖ ≤ C

(
1

λn+1
+ 1

γn+1

)1/2

, (28)

where C depend on T, α, ∂Ω, ‖g‖L∞(H1).

Now, we estimate the error estimate for temperature. We observe that

ρn(t) = exp(−Bt)Rnθ0 +
∫ t

0
exp(−(t − s)B)(Rn f (s) − Rn(u(s) · ∇θ(s))ds,

θn(t) = exp(−Bt)Rnθ0 +
∫ t

0
exp(−(t − s)B)(Rn f (s) − Rn(un(s) · ∇θn(s))ds,

therefore, we obtain that

ηn(t)=−
∫ t

0
exp(−(t − s)B)(Rn(u(s) · ∇θ(s))−Rn(un(s) · ∇θn(s)))ds. (29)

Then,

‖Bαηn(t)‖ ≤
∫ t

0
‖Bα exp(−(t − s)B)(Rn(u(s) · ∇θ(s)) − Rn(un(s) · ∇θn(s))‖ds.

123



On the convergence of spectral approximations…

We estimate the right hand side of the above inequality as follows:

‖Rn(u(s) · ∇θ(s) − un · ∇θn(s))‖
≤ ‖(u(s) − un(s)) · ∇θ(s)‖ + ‖un(s) · ∇(θ(s) − θn(s))‖
≤ ‖u(s) − un(s)‖L3‖∇θ(s)‖L6 + ‖un(s)‖L∞‖∇(θ(s) − θn(s))‖
≤ C‖∇u(s) − ∇un(s)‖ + C‖∇θ(s) − ∇θn(s)‖
≤ C

(
1

λn+1
+ 1

γn+1

)1/2

,

which implies the following estimate for any 0 < α < 1

‖Bαηn(t)‖ ≤ C

(
1

λn+1
+ 1

γn+1

)1/2

,

where C depend on α, T, ∂Ω .
From Lemma 5 and the estimate (28) we have immediately that

‖Aαu(t) − Aαun(t)‖ ≤ ‖Aαu(t) − Aαvn(t)‖ + ‖Aαwn(t)‖
≤ C(ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

.

Analogously we prove the result for the temperature. ��

5.2 Estimates in D(A) and D(B)

Lemma 6 Under the hypothesis of Theorem 5 the following estimates are true,

‖Au(t) − Avn(t)‖ ≤ C

λε
n+1

, ‖Bθ(t) − Bρn(t)‖ ≤ C

γ ε
n+1

(30)

for 0 ≤ ε < 1/4.

Proof By using Lemma 4 and Theorem 5, we obtain that

‖Au(t) − Avn(t)‖ = ‖A(I − Pn)u(t)‖ = ‖(I − Pn)Au(t)‖ ≤ 1

λε
n+1

‖A1+εu(t)‖.

The proof for the temperature is analogous. ��

Lemma 7 Under the conditions of previous theorem, the following estimates are sat-
isfied
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‖Awn(t)‖ ≤ C(ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

, (31)

‖Bηn(t)‖ ≤ C(ε)

λε
n+1

+ C

γ ε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

. (32)

Proof From (5.1), we have for any ε ∈ (0, 1/4)

‖Awn(t)‖ ≤
∫ t

0
‖A1−ε exp(−(t − s)A)‖‖Aε(Pn[(θ(s) − θn(s))g(s)])‖ds

+
∫ t

0
‖A1−ε exp(−(t − s)A)‖‖Aε

(Pn[(u(s) · ∇u(s) − un(s) · ∇un(s))]‖ds. (33)

From some classical interpolation and Sovolev inequalities for three-dimensional
domains and the equivalence between the norms ‖∇v‖L2 and ‖v‖H1 we have that

‖Aε(Pn[(θ(s) − θn(s))g(s)])‖ ≤ C‖Pn[(θ(s) − θn(s))g(s)]‖
≤ C‖(θ(s) − θn(s))‖H1‖g(s)‖H1

≤ C‖∇(θ(s) − θn(s))‖‖g‖L∞(H1). (34)

By using Lemma 1 with ζ = η = ε, we obtain

‖Aε(Pn[(u(s) · ∇u(s) − un(s) · ∇un(s))]‖ ≤ C‖A3/4+ε(u(s) − un(s))‖‖Au(s)‖
+C‖A3/4+εun(s)‖‖A(u(s) − un(s))‖. (35)

From (33), by using (34), (35) and (27), we get that

‖Awn(t)‖ ≤
∫ t

0

1

(t − s)1−ε
C‖∇(θ(s) − θn(s))‖ds

+
∫ t

0

1

(t − s)1−ε
C(‖A3/4+ε(u(s) − un(s))‖ + ‖A(u(s) − un(s))‖)ds.

From (16) and Theorem 6, we obtain

‖Awn(t)‖ ≤ C

(
1

λn+1
+ 1

γn+1

)1/2 ∫ t

0

1

(t − s)1−ε
ds

+
[
C(ε)

λε
n+1

+
(

1

λn+1
+ 1

γn+1

)1/2
] ∫ t

0

1

(t − s)1−ε
ds

+
∫ t

0

1

(t − s)1−ε
(‖Au(s) − Avn(s)‖ + ‖Awn(s)‖)ds.
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By using Lemma 6, we have that

∫ t

0

1

(t − s)1−ε
‖Au(s) − Avn(s)‖ds ≤ C

1

λε
n+1

.

Therefore, we obtain

‖Awn(t)‖ ≤ C(ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

+
∫ t

0

1

(t − s)1−ε
‖Awn(s)‖ds.

By taking Lemma 3 into account, (31) is attained.
In analogous way, we prove the result to the temperature. From (29), by using (22),

we have that

‖Bηn(t)‖ ≤
∫ t

0
‖B1−ε exp(−(t − s)B)‖

·‖Bε
(
Rn(u(s) · ∇θ(s)) − Rn(un(s) · ∇θn(s))

) ‖ds,

where

‖Bε
(
Rn(u(s) · ∇θ(s)) − Rn(un(s) · ∇θn(s))

) ‖
≤ C‖A3/4+ε(u(s) − un(s))‖‖Bθn(s)‖ + C‖A3/4+εun(s)‖‖B(θ(s) − θn(s)‖
≤ C(ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

+ C‖B(θ(s) − ρn(s))‖ + C‖Bηn(s)‖

≤ C(ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

+ C
1

γ ε
n+1

+ C‖Bηn(s)‖.

Therefore, we conclude that

‖Bηn(t)‖ ≤ C

[
C(ε)

λε
n+1

+ C

γ ε
n+1

+
(

1

λn+1
+ 1

γn+1

)1/2
] ∫ t

0

1

(t − s)1−ε
ds

+‖Bηn(s)‖
∫ t

0

1

(t − s)1−ε
ds.

Again, Lemma 3 provides (32). ��

6 Proof of Theorem 4

By applying Lemmas 6 and 7 to the following splitting

‖Au(t) − Aun(t)‖ ≤ ‖Au(t) − Avn(t)‖ + ‖Awn(t)‖
‖Bθ(t) − Bθn(t)‖ ≤ ‖Bθ(t) − Bρn(t)‖ + ‖Bηn(t)‖,
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we conclude that

‖Au(t) − Aun(t)‖ ≤ C

[
C(ε)

λε
n+1

+
(

1

λn+1
+ 1

γn+1

)1/2
]

and

‖Bθ(t) − Bθn(t)‖ ≤ C

[
C(ε)

λε
n+1

+ 1

γ ε
n+1

+
(

1

γn+1
+ 1

γn+1

)1/2
]

.

On the other hand, ut − unt satisfies

ut (t) − unt (t) = −A(u(t) − un(t)) − (P((u(t) · ∇)u(t)) − Pn((un(t) · ∇un(t)))

+P( j(t) − θg(t)) − Pn( j(t) − θng(t)).

Therefore,

‖ut (t) − unt (t)‖ ≤ ‖A(u(t) − un(t))‖ + ‖(u(t) · ∇)(u(t)(t) − un(t))‖
+‖((u(t) − un(t)) · ∇)un(t)‖ + ‖(θn(t) − θ(t))g(t)‖ (36)

holds. The first term on the right side of (36) is bounded as in (19). For the second and
third terms, we use Theorem 2 and (16),

‖(u(t) · ∇)(u(t) − un(t))‖≤‖Au(t)‖‖∇u(t) − ∇un(t)‖≤C

(
1

λn+1
+ 1

γn+1

)1/2

,

‖((u(t) − un(t)) · ∇)un(t)‖≤‖Aun(t)‖‖∇u(t) − ∇un(t)‖≤C

(
1

λn+1
+ 1

γn+1

)1/2

.

The last term, also by (16), can be bounded as

‖(θn(t) − θ(t))g(t)‖ ≤ ‖∇(θn(t) − θ(t))‖‖g(t)‖H1 ≤ C

(
1

λn+1
+ 1

γn+1

)1/2

.

Therefore, we conclude that

∥
∥ut (t) − unt (t)

∥
∥ ≤ C(ε)

λε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

.

By proceeding in the same way for the temperature we obtain

∥
∥θt (t) − θnt (t)

∥
∥ ≤ C(ε)

λε
n+1

+ C

γ ε
n+1

+ C

(
1

λn+1
+ 1

γn+1

)1/2

.
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