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ABSTRACT
Self-gravitating accretion discs in a gravitoturbulent state, including radiation and gas pres-
sures, are studied using a set of new analytical solutions. While the Toomre parameter of the
disc remains close to its critical value for the onset of gravitational instability, the dimension-
less stress parameter is uniquely determined from the thermal energy reservoir of the disc and
its cooling rate. Our solutions are applicable to the accretion discs with dynamically important
radiation pressure such as that in the quasars discs. We show that physical quantities of a
gravitoturbulent disc in the presence of radiation are significantly modified compared to solu-
tions with only gas pressure. We show that the dimensionless stress parameter is an increasing
function of the radial distance so that its steepness strongly depends on the accretion rate. In
a disc without radiation its slope is 4.5; however, we show that in the presence of radiation,
it varies between 2 and 4.5 depending on the accretion rate and the central mass. As for the
surface density, we find a shallower profile with an exponent −2 in a disc with sub-Eddington
accretion rate compared to a similar disc, but without radiation, where its surface density slope
is −3 independent of the accretion rate. We then investigate gravitational stability of the disc
when the stress parameter reaches to its critical value. In order to self-consistently determine
the fragmentation boundary, however, it is shown that the critical value of the stress parameter
is a power-law function of the ratio of gas pressure and the total pressure and its exponent is
around 1.7. We also estimate the maximum mass of the central black hole using our analytical
solutions.
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1 IN T RO D U C T I O N

Accretion discs around supermassive black holes (SMBHs) at the
centre of almost every galaxy are believed to be the main source of
their huge luminosities. This intense radiation allows us to detect
them as quasars and active galactic nuclei (AGNs). Enormous efforts
have gone into understanding the gravitational instability (GI) of
accretion discs, in particular because of its vital role as a possible
mechanism for planet formation at the outer parts of protoplanetary
discs (PPDs) and star formation in AGNs (for recent reviews about
GI in the accretion discs see, e.g. Rice 2016; Kratter & Lodato 2016).
Gravitational stability of a disc with the surface density �, the sound
speed cs, and the Keplerian angular velocity � is studied using
the Toomre parameter, i.e. Q = cs�/πG�. If Q drops to a value
less than a threshold around unity, the disc becomes gravitationally
unstable (Toomre 1964).

Early analytical models of self-gravitating disc are actually direct
generalization of the Shakura & Sunyaev (1973) model (hereafter
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SS model) by considering non-Keplerian angular velocity of the
disc and its thickness correction due to the self-gravity of the disc
itself. In these studies, like the SS model, the turbulent viscosity
coefficient is simply an input parameter, and the momentum trans-
fer mechanism is drastically simplified by the α-prescription (e.g.
Khajenabi & Shadmehri 2007). However, it is important to keep in
mind that deviations from the Keplerian rotation and the thickness
correction because of the self-gravity are both negligible so long as
the total mass of the disc is much smaller than that of the central
object.

In other attempts to model self-gravitating discs, some authors
proposed that one can close the set of the equations not by an energy
equation, but by a self-regulation prescription related to the condi-
tion of the marginal gravitational stability of the disc (e.g. Bertin
1997; Bertin & Lodato 1999, 2001; Lodato & Bertin 2001; Sirko &
Goodman 2003; Matzner & Levin 2005). These models where the
gaseous disc is maintained in a state of marginal gravitational sta-
bility by keeping the Toomre parameter around its threshold value
are also known as Q-disc. The reason for suppressing the energy
equation is that some feedback mechanisms are assumed to supply
the necessary energy to prevent the Toomre parameter to fall to less
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than unity. In another type of Q-disc models, however, the energy
equation is kept, but the angular momentum transport equation is
suppressed by assuming that some additional momentum transport
mechanisms exist in the disc to maintain the system in a marginally
stable state (Collin & Zahn 1999, 2008). We have to note that in
these models, like in the SS model, the viscosity parameter α is
treated as an ‘assigned parameter’. A different approach for mod-
elling a disc where its turbulence is driven by the GI, however,
is to specify the viscosity parameter α as an explicit function of
the Toomre parameter, but its exact functional form is prescribed
in an ad hoc fashion (e.g. Lin & Pringle 1987; Kratter, Matzner
& Krumholz 2008; Zhu, Hartmann & Gammie 2009a; Zhu et al.
2009b, 2010; Martin & Lubow 2011; Martin & Livio 2013; Martin
& Lubow 2014). In these models, not only the dependence of α on
Q is not determined based on physical arguments, but also it is not
explicitly assumed that the Toomre parameter remains close to its
critical value.

Even the Toomre parameter being very close to the threshold of
the instability, however, does not imply that the disc will fragment
within a reasonable period of time. It has been shown by Gam-
mie (2001) and confirmed by subsequent studies (e.g. Johnson &
Gammie 2003; Rice et al. 2003; Rice, Lodato & Armitage 2005;
Cossins, Lodato & Clarke 2009, 2010) that the fragmentation of a
disc not only implies that the Toomre parameter being close to its
critical value, but also it depends on the disc efficiency in losing the
generated heat due to the gravity-driven turbulence. In other words,
if the cooling time-scale, tcool, becomes much longer than the dy-
namical time-scale, �−1, even with a Toomre parameter close to its
threshold, the disc will not fragment. Under these circumstances,
instead, the disc can settle into a non-fragmenting gravitoturbulent
state where the angular momentum is transported by gravity-driven
turbulence. It has been shown that the dimensionless stress param-
eter α is related to the cooling time-scale as α � (�tcool)−1 (e.g.
Gammie 2001). Numerical simulations show that when α � αC ∼ 1,
the disc fragments into a number of clumps and in the opposite
limit, where the disc is in thermal equilibrium, the disc settles into a
stationary gravitoturbulent state. There are, however, uncertainties
about the critical value αC (e.g. Rice et al. 2005).

Thus, in a gravitoturbulent disc, the Toomre parameter Q remains
close to its critical value and the dimensionless stress parameter α is
written in terms of the cooling time-scale and the angular velocity.
Rafikov (2009) explored properties of the steady-state gravitotur-
bulent discs where there are only two input parameter (i.e. central
mass and the accretion rate) and in contrast to most of previous an-
alytical models for the self-gravitating discs, the parameter α is no
longer an input parameter. Rafikov (2009) studied the astrophysical
implications of his interesting analytical solutions in the context of
PPDs. Although Rafikov (2009) properties of the gravitoturbulent
discs in detail, Levin (2007) had also studied proposed more or less
a similar model for explaining star formation near to the Galactic
centre. None of these models included radiation pressure.

Recently, Rafikov (2015) extended his previous work by doing
a detailed comparative study between his solutions and those so-
lutions which consider explicit dependence of the stress parameter
α on the Toomre parameter Q in an ad hoc fashion (e.g. Lin &
Pringle 1987; Kratter et al. 2008; Zhu et al. 2009a,b, 2010; Martin
& Lubow 2011; Martin & Livio 2013; Martin & Lubow 2014). He
then showed that his approach is more flexible, robust and straight-
forward. Other properties of a PPD such as locations of dead zone
and snow line are also investigated in Rafikov (2015).

Although the concept of the gravitoturbulent state has been used
for describing the outer parts of PPDs (Clarke 2009; Matzner &

Levin 2005; Rafikov 2009, 2015), the astrophysical implications
of this model can be extended to the self-gravitating quasar discs
as well. Many authors have already investigated the properties of
the outer parts of the quasar discs which are prone to the GI us-
ing either analytical approaches (e.g. Shlosman & Begelman 1989;
Nayakshin 2006; Levin 2007) or numerical simulations (e.g. Jiang
& Goodman 2011) under certain simplifying assumptions. Most of
the analytical models for describing the inner regions of the quasar
discs, however, are Q-disc models (e.g. Goodman 2003; Sirko &
Goodman 2003; Goodman & Tan 2004; Levin 2007) or only a
direct generalization of SS model (e.g. Khajenabi & Shadmehri
2007) which means the α parameter is treated as an input param-
eter. These models predict that sub-parsec region of a quasar disc
is gravitationally stable, but beyond a characteristic radius where
its location depends on the input parameters of the model, the disc
fragments into clumps which their subsequent evolution is under
intense debate (e.g. Goodman & Tan 2004; Levin 2007; McKernan
et al. 2012; Inayoshi & Haiman 2014). On a larger scale, however,
these models are not appropriate and in more advanced models not
only ongoing intense star formation, stars, and their gravitational
interactions with the gas component should be considered, but also
angular momentum transport occurs by different mechanisms such
as global spiral waves, gravitational star-gas interactions and even
supernova explosions (e.g. Thompson, Quataert & Murray 2005;
Krumholz & Burkert 2010; Wang et al. 2010; Hopkins & Quataert
2011; Muñoz & Furlanetto 2012; Inayoshi & Haiman 2014, 2016).

The advantage of gravitoturbulent model is that α parameter is
obtained using physical arguments based on the thermodynamics
of the disc. In fact, thermal equilibrium dictates a unique value
for this parameter. In doing so, thermal content of the system and
the rate of internal energy loss are important physical gradients. A
similar approach can also be adopted for modelling quasar discs,
where both the gas and the radiation pressures are important. In the
gravitoturbulent model of Rafikov (2009), however, radiation pres-
sure is neglected because of its negligible role in the gravitational
properties of a PPD. In addition to the dynamical role of radiation
pressure by providing extra support in the vertical direction of a
disc, radiation pressure also modifies the thermal energy content of
a disc and the viscosity parameter.

A gravitoturbulent model is presented in this study which is ap-
propriate for the self-gravitating inner part of a quasars disc. Our
analytical solutions are different from the Rafikov (2009) solutions
in that our model includes radiation pressure as well. In Section 2,
basic assumptions and equations are presented. Optically thick so-
lutions are obtained in Section 3. The properties of the solutions, the
location of the fragmentation boundary and the mass of the clumps
are studied for a wide range of the input parameters in Section 4.
We show that if a fixed value for the critical stress parameter αC

is considered, in the presence of radiation and for high accretion
rates, the radius beyond which the disc fragments is unphysically
large. Overcoming this problem requires αC to be an increasing
power-law function of the ratio of gas and total pressures which
is actually consistent with numerical simulations (e.g. Jiang &
Goodman 2011). In Section 5, an estimate of the central black
hole (BH) maximum mass using our solution is presented. We then
conclude by a summary of the results and possible astrophysical
implications in Section 6.

2 BASI C EQUATI ONS

We consider a gravitoturbulent disc in which not only the gas pres-
sure pgas is important, but also the radiation pressure prad plays a

MNRAS 464, 4018–4027 (2017)

 at U
niversity of R

egina on D
ecem

ber 20, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


4020 M. Shadmehri, F. Khajenabi and S. Dib

significant role. Thus, we can introduce total pressure as
p = pgas + prad, where pgas = ρkBT/μmH and in the optically thick
regime the radiation pressure becomes prad = 1

3 aT 4. The density
and the mid-plane temperature are denoted by ρ and T, and μ is
the mean molecular weight and mH is the mass of hydrogen. We
adopt μ = 0.6, which is valid for a fully ionized gas. Moreover,
kB is Boltzmann constant and a is the radiation constant. Then, it
will be useful to introduce the ratio of the gas pressure and the total
pressure as β = pgas/p. We then obtain

1

3
a

(
μmH

kB

)
T 3

ρ
= 1 − β

β
. (1)

We also assume that the disc is in a self-regulated state which
means that its Toomre parameter stays around threshold value of the
instability, say Q0, and so Q0 = �cs/(πG�). On the other hand,
the surface density � is written in terms of the volume density ρ

and the thickness of the disc H, i.e. � = 2ρH, where H = cs/�,
� = (GM/r3) and cs = √

p/ρ. Here, the radial distance is denoted
by r. Upon substituting these relations into the above self-regulated
condition, the volume density is obtained as

ρ = �2

2πGQ0
. (2)

Making use of the equations (1) and (2), the mid-plane temperature
can now be written as

T =
(

2

3

)−1/3

(πGQ0)−1/3a−1/3

(
μmH

kB

)−1/3

×
(

1 − β

β

)1/3

�2/3. (3)

From the self-regulated condition, the sound speed is obtained as
cs = πGQ0�/�. If we substitute from equation (2) for the density,
a relation between the total pressure and the surface density is
obtained, i.e.

p = 1

2
(πGQ0)�2. (4)

On the other hand, the total pressure is p = ρkBT/μmH + (1/3)aT4

and upon substituting into this equation from equation (3) for the
temperature and from equation (4) for the total pressure, the surface
density is obtained in terms of the ratio β and angular velocity, i.e.

� =
(

2a

3

)−1/6

(πGQ0)−7/6

(
μmH

kB

)−2/3

×�4/3 (1 − β)1/6 β−2/3. (5)

Under the assumption of complete ionization and equal gas and
radiation temperatures, the internal energy per unit area, U, can be
written as (Jiang & Goodman 2011)

U =
(

1 − β

2

)
�c2

s . (6)

The cooling function � describes the radiative losses from the
surface of the disc, i.e.

� = 2σT 4
eff ≈ 16

3
σT 4f (τ )−1, (7)

where σ is the Stephan–Boltzman constant, Teff is the effective
temperature at the surface of the disc and τ is the optical depth.
Here, function f(τ ) is introduced to smoothly interpolates between
optically thick (τ � 1) and optically thin (τ � 1) regimes. This

function is approximated by f(τ ) = τ + τ−1. Having the internal
energy and the cooling function, the cooling time, tcool, becomes

tcool = U

�
= (1 − β

2 )�c2
s

16
3 σT 4

f (τ ). (8)

Now, we can obtain the dimensionless stress parameter α as
a function of � and β. Upon substituting the cooling time into
equation α � (�tcool)−1, we have

α = 16

3
σT 4

(
1 − β

2

)−1

�−1�−1c−2
s [f (τ )]−1. (9)

Since in a gravitoturbulent disc the Toomre parameter is about its
threshold for the instability, we then obtain cs = πGQ0�/�. Using
this equation for the sound speed, equation (9) is written as

α = 16

3
σT 4 (πGQ0)−2 (1 − β

2
)−1�−3�[f (τ )]−1. (10)

If we use equation (5) for the surface density, the above equation
becomes

α = 8

(
2

3

)1/6

σ (πGQ0)1/6 a−5/6

(
μmH

kB

)2/3

×�−1/3

(
1 − β

2

)−1

(1 − β)5/6β2/3[f (τ )]−1. (11)

Also, viscosity is ν = αc2
s /�, or

ν = α(πGQ0)2�2�−3. (12)

By substituting equations (5) and (11) into the above equation for
the viscosity, we obtain

ν = 8

(
2

3

)−1/6

σ (πGQ0)−1/6 a−7/6

(
μmH

kB

)−2/3

×�−2/3

(
1 − β

2

)−1

(1 − β)7/6β−2/3[f (τ )]−1. (13)

So far we have obtained physical quantities of the disc as func-
tions of � and β, and now, another relation between these vari-
ables is needed to close the equations of our model. We know that
Ṁ = 3πν�, where Ṁ is the accretion rate. Upon substituting from
equations (5) and (13) into this equation, an algebraic equation is
obtained, i.e.

Ṁ = 24π

(
2

3

)−1/2

σ (πGQ0)−4/3 a−4/3

(
μmH

kB

)−4/3

×�2/3

(
1 − β

2

)−1

(1 − β)4/3β−4/3[f (τ )]−1. (14)

The above equations describe steady-state structure of a grav-
itoturbulent disc including radiation and gas pressures. When the
system is optically thick, we can further simplify these solutions
and transform them into dimensionless as we do in Section 2.

3 O P T I C A L LY T H I C K SO L U T I O N S

We can now consider optically thick regime where the optical depth
is much larger than 1. Thus, we have τ = 1

2 κe.s.� � 1, where κe.s. ≈
0.4 cm2 g−1 is the electron-scattering opacity. In the optically thick
regime, we have f(τ ) � τ . Dimensionless accretion rate ṁ, central
mass m and the radial distance r̃ are introduced as

ṁ = Ṁ

Ṁ0
, m = M

M0
, r̃ = r

r0
, (15)
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where Ṁ0, M0 and r0 are the reference values for the accretion rate,
mass and the distance, respectively. Using Eddington luminosity,
LEdd, the Eddington accretion rate is defined as ṀEdd = LEdd/εc

2 =
4πGM/εκe.s.c, where c is the speed of light and ε is the accretion
efficiency which depends on the BH spin (Bardeen 1970). A value
which is often used is ε = 0.1, and we adopt this value unless oth-
erwise stated. As for the reference of the accretion rate, we assume
Ṁ0 = ṀEdd. We also assume r0 = rs, where rs is the Schwarzschild
radius, i.e. rs = 2GM/c2. Thus, equation (14) becomes

r̃(β) = ṁm1/3C−1

(
1 − β

2

)
(1 − β)−7/6β2/3, (16)

where the dimensionless parameter C is

C = 48π

(
2

3

)−1/3

σκ−1
e.s. (πGQ0)−1/6 a−7/6

×
(

μmH

kB

)−2/3

Ṁ−1
0 �

−2/3
0 , (17)

where �0 = (GM0/r
3
0 )1/2. The surface density becomes

�(β) = �0C
2ṁ−2

(
1 − β

2

)−2

(1 − β)5/2β−2, (18)

where

�0 =
(

2

3

)−1/6

a−1/6 (πGQ0)−7/6

(
μmH

kB

)−2/3

�
4/3
0 . (19)

The stress parameter becomes

α(β) = α0C
−1/2ṁ5/2

(
1 − β

2

)3/2

(1 − β)−9/4β3, (20)

α0 = 16

(
2

3

)1/6

σ (πGQ0)1/6 a−5/6

(
μmH

kB

)2/3

×�
−1/3
0 κ−1

e.s.�
−1
0 C−2.

Also, temperature of the disc is obtained as

T = T0ṁ
−1

(
1 − β

2

)−1

(1 − β)3/2β−1, (21)

T0 =
(

2

3

)−1/3

(πGQ0)−1/3a−1/3

(
μmH

kB

)−1/3

�
2/3
0 C. (22)

We can also determine the thickness of the disc, i.e. H = cs/�.
Using self-regulated condition, thickness of the disc becomes H =
(πGQ0)�/�2. Upon substituting from equations (16) and (18) into
this equation, we can obtain the opening angle of the disc, i.e.

H

r
= H0(1 − β)29/6β−2/3, (23)

where H0 = (πGQ0)(GM)−1r2
0 �0m

2/3. This equation shows that
when the radiation pressure is high (i.e. low β regime), the ratio
H/r is larger compared to a case with a low radiation pressure. It
means that the disc becomes slim rather than thin.

The above analytical solutions describe properties of an optically
thick disc with radiation. In the next section, we explore these
solutions for different sets of the input parameters.

4 A NA LY SIS

4.1 Properties of the solutions

Given the mass of the central BH and the rate at which mass is
accreting on to it, we can explore the behaviour of our solutions
as a function of the radial distance. Fig. 1 shows stress parame-
ter α (top left), ratio β (top right), surface density (bottom left)
and the temperature profiles (bottom right) of a disc with central
mass 108 M	. The role of the second input parameter, i.e. ac-
cretion rate, is illustrated by considering different accretion rates:
Ṁ = 0.01ṀEdd (solid), 0.1MEdd (dashed) and MEdd (dash–dotted).
Our solutions exhibit a strong dependence on accretion rate. For a
central BH with mass 108 M	, we then obtain C = 2.37 × 10−3,
�0 = 2.34 × 1011 g cm−2, α0 = 3.11 × 10−3 and T0 = 9.2 × 104 K.
Number beside each curve is the exponent of a power-law function
of the radial distance which can be fitted to the shown curve. We find
that these approximate power-law functions describe our solutions
reasonably well, i.e.

α ∝ rνα , β ∝ rνβ , � ∝ rν� , T ∝ rνT , (24)

where the slopes να , νβ , ν� and νT strongly depend on the input
parameters. All shown solutions give optical depths much larger
than 1 as we expect in the optically thick regime.

The profile of α versus radial distance for high accretion rates
tends to be steeper at small radii comparing to the outer parts. At
the inner parts the slope is between να � 3.35 and 3.5; however,
all curves tend to a slope around 2 at the outer regions of the disc.
The transition between these two regions shifts to the smaller radii
as the accretion rate decreases. As we go to a higher accretion rate,
the stress parameter α gets closer to its critical value at a smaller
radius, which means the disc becomes increasingly susceptible to
the fragmentation with increasing the accretion rate. We deem that
a disc fragments once α becomes larger than its critical value αC

� 1, and so all solutions are truncated at a characteristic radius
where α = αC = 1. In the absence of radiation, Rafikov (2009)
found that α ∝ r4.5 irrespective of the accretion rate. This suggests
that radiation causes to have a shallower profile of α and its slope
depends on the accretion rate. Since variation of α is slower than
Rafikov (2009), the disc evolves as a gravitoturbulent state over a
larger range of radii compared to a case without radiation.

The profile of β as a function of r is shown in Fig. 1 (top right).
While the disc is radiation-dominated at its inner regions, as we go
to the outer parts, role of radiation becomes less effective so that
β tends to one at the self-gravitating radius.1 This trend is more
or less independent of the accretion rate for the explored cases in
this figure; however, the action of the radiation is more effective
over a wider range of the radial distances for high accretion rates.
Moreover, the slope is νβ � 1.45, irrespective of the accretion rate.

Fig. 1 (bottom left) depicts surface density versus r and demon-
strates that its slope varies between −2 and −3 depending on the
accretion rate. Surface density at the inner part of the disc with a
slope around −3 is steeper than the outer part with a slope −2,
and, the transition between these two regions shifts to the larger
radii with increasing the accretion rate. For sub-Eddington accre-
tion rates, over a large spatial extend of the disc, the slope of the
surface density distribution is −2 which agrees with a trend found
by Jiang & Goodman (2011) in their simulations. With increasing
the accretion rate, not only the surface density enhances at all parts

1 We define self-gravitating radius as a radius where the stress tensor param-
eter reaches to its critical value and so the disc may fragment into clumps.
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Figure 1. Profiles of the dimensionless stress parameter (top left), ratio of the gas pressure and the total pressure (top right), surface density (bottom left) and
temperature (bottom right) versus radial distance normalized by the Schwarzschild radius. Mass of the central BH is 108 M	 and μ = 0.6. Here, we have
�0 = 2.34 × 1011 g cm−2 and T0 = 9.2 × 104 K. These curves are shown for different accretion rates: ṁ = 0.01 (solid), 0.1 (dashed) and 1 (dash–dotted). For
each physical quantity, we found that it is possible to fit a power-law function of the radial distance and the corresponding exponent is shown near to the curve.

of the disc, but also the size of inner part with a slope −3 becomes
larger, though the slope of the outer part remains around −2. The
temperature of the disc also exhibits a strong dependence on the
accretion rate as we can see in Fig. 1 (bottom right). The disc is
indeed cooler in the outer parts for a given accretion rate, and, as
expected, the disc is hotter with increasing the accretion rate. The
slope of temperature, however, shows little variations with the ac-
cretion rate. As we go to higher accretion rates, the temperature
profile becomes slightly steeper so that its slope varies from about
−1.3 to −1.5.

Now, we explore how these results are influenced by varying the
mass of the central object. In Fig. 2, we plot disc quantities for the
same parameters as in Fig. 1, but for a central BH with M = 109 M	.
In this case, we have C = 2.37 × 10−3, �0 = 2.34 × 109 g cm−2,
α0 = 0.98 and T0 = 9.2 × 103 K. The profiles of α for different
accretion rates are shown in Fig. 2 (top left). This plot shows that
α(r) is very steep in the inner parts of the disc with a slope να �
4.3, whereas slope of about 2.2 is achieved further out in the disc.
As the accretion rate increases, however, the slope να tends to about
4.38 over entire range of the radial distances.

The behaviour of the ratio β is shown in Fig. 2 (top right). While
the inner parts are radiation-dominated independent of the accretion
rate, the outer regions are gas-dominated for sub-Eddington or Ed-
dington accretion rates. As before, all curves are truncated once the
stress parameter α becomes 1. Profile of the surface density (bot-
tom left) and temperature (bottom right) show that their slopes are
ν� � −3 and νT � −1.5 for Eddington accretion rate, whereas for
sub-Eddington accretion rates, the profiles become shallower with
slopes about ν� � −2.2 and νT � −1.33. Thus, the general trends
of the physical quantities of a disc with M = 109 M	 are similar to
the case with M = 108 M	 in Fig. 1.

Although we introduced function f(τ ) which provides a smooth
transition between optically thin and thick regimes, we found that all
the solutions are actually corresponding to the optical thick case. So,
we simplified the equations further in Section 3 by writing f(τ ) � τ .
Then, we determined physical quantities including temperature as a
function of the radial distance. It means that the transition between
low and high T regimes occurs in the optical thick regime, and the
bridging formula f(τ ) does not affect our solutions. In Section 3, we
kept f(τ ) only to present the equations in their general forms.
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Gravitoturbulent quasar discs 4023

Figure 2. Same as Fig. 1, but the mass of the central BH is M = 109 M	. Here, we have C = 2.37 × 10−3, �0 = 2.34 × 109 g cm−2 and T0 = 9.2 × 103 K.

4.2 Location of the self-gravitating radius

In keeping with the approach outlined in the previous studies (e.g.
Rafikov 2009, 2015), the disc fragments into small clumps when
stress parameter α drops below a critical value αC. Fig. 3 shows
the self-gravitating radius rsg as a function of the accretion rate
for various central masses. The expected trend is to have a smaller
self-gravitating radius as the accretion rate increases. Contrary to
this physical expected behaviour, however, we see in Fig. 3 that for
a given central mass, the radius rsg decreases with Ṁ , but beyond
a certain accretion rate this behaviour is reversed and radius rsg

increases as more mass is accreted. Note that for determining rsg in
this figure, a fixed value for the critical value (independent of the
properties of disc) is considered, i.e. αC = 1. This unphysical trend
for the self-gravitating radius as a function of the accretion rate,
however, is significant for high accretion rates.

Fig. 3 raises some concerns about the validity of αC � 1 in the
discs with the radiation pressure. Numerical simulations of Jiang &
Goodman (2011) have already shown that once radiation pressure is
included, fragmentation can occur at the boundary with �tcool � 1,
or equivalently αC � 1. In other words, the critical value of the
stress parameter αC depends on the ratio of the gas pressure and the
total pressure, i.e. β. Numerical simulations of Jiang & Goodman

Figure 3. Dependence of the self-gravitating radius rsg on the accretion
rate. Each curve is labelled by the corresponding mass of the central BH in
solar masses.
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Figure 4. Results from numerical simulations are marked with triangles.

(2011) are restricted to only a central BH with 108 M	; however,
their results clearly show that αC depends on the ratio β. In Fig. 4
(top), we take values of the critical stress parameter αC directly from
their plots, when available. This figure displays αC as a function of
β by filled triangles. We then found that a power-law function as
αC ∝ βn can be fitted, where its slope is about n = 1.64. The
bottom plot of Fig. 4 shows self-gravitating radius as a function of
the accretion rate based on the simulations of Jiang & Goodman
(2011). Most noteworthy is the fact that our model for a disc with
108 M	 as a central object predicts that the location of rsg is in the
gas-dominated regime (i.e. β ≈ 1) when the accretion rate is less
than Eddington rate. Simulations of Jiang & Goodman (2011) also
confirms this trend, whereas Goodman & Tan (2004) predict that the
location of rsg is in the radiation-dominated part of the disc. Here,
we fitted a power-law function as rsg/rs ∝ ṁ� , where its slope is
around � = −0.2.

Thus, the critical parameter αC turns out to depend on the ratio β

as a power-law function. Neglecting this dependence leads to unex-
plainable trends for the fragmentation boundary, as we showed in
Fig. 3. Rather than adopting a fixed value around unity for the crit-
ical stress parameter as in Rafikov (2009) and some other previous
works, we instead use αC = βn, where in the absence of radiation it
tends to unity, and, this new condition will enable us to determine
rsg self-consistently.

Figure 5. Self-gravitating radius rsg as a function of the accretion rate. The
mass of the central BH is 108 M	. Each curve is labelled by a pair of
numbers as (n, �), where n is the slope of the critical stress parameter and
� is the slope of the fitted function as rsg ∝ ṁ� . A case with n = 1.7 which
is the based on the results of the simulations (filled triangles) is shown by
dashed curve.

Fig. 5 illustrates the dependence of the self-gravitating radius
on the accretion rate for a central BH with 108 M	 and various
slope n. Each curve is labelled by a pair of numbers, where the first
number is n and the second number denotes the slope �. A case with
n = 1.7 which agrees with the simulations is shown by the dashed
curve. Results of the simulations are marked by filled triangles. For
sub-Eddington accretion rates, the location of rsg is independent
of the slope n and its dependence on the accretion rate can be
fitted as rsg ∝ ṁ−0.26rs. This result agrees reasonably well with the
simulations of Jiang & Goodman (2011), which can be fitted as rsg ∝
ṁ−0.2rs (see Fig. 4). Our analysis for the Eddington accretion rate
predicts that rsg � 1600rs, whereas fitted function to the simulations
gives rsg � 2570rs. But equation 39 in Jiang & Goodman (2011)
for a similar accreting system gives rsg � 4000rs. In a disc with a
fixed stress parameter and viscous tensor in proportion to the total
pressure, on the other hand, Goodman (2003) found that the self-
gravitating radius becomes rsg � 2200rs, if β � 1, M = 108 M	
and Ṁ = ṀEdd. Once the accretion rate increase to the values larger
than the Eddington rate, however, the effect of n becomes more
significant. For high accretion rates, fragmentation boundary resides
in the outer parts of the disc where the parameter β is less than unity,
which means that the effect of radiation pressure is more noticeable.
For lower accretion rates, we have roughly β(rsg) ∼ 1 which implies
a gas-dominated region. Fig. 6 is the same as Fig. 5, but for a central
BH with 109 M	. Behaviour of rsg as a function of the accretion
rate is analogous to the previous explored case with M = 108 M	,
except for the fact that the effect of n becomes noticeable at lower
accretion rates compared to Fig. 5. Again, the preferred value for n
turns out to be 1.7 in agreement with the mentioned simulations.

Having explored different cases, we found an approximate rela-
tion for the self-gravitating radius as a function of the accretion rate
and the central mass:

rsg

rs
� 1.57 × 103m−0.94ṁ−0.28. (25)
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Gravitoturbulent quasar discs 4025

Figure 6. Same as Fig. 5, but for a more massive central object, i.e.
M = 109 M	.

4.3 Mass of the clumps

Now, we can estimate mass of the fragments at the self-gravitating
radius. The most unstable mode for a marginally gravitationally
stable disc is of order of the disc thickness, H. Thus, the mass of
a fragment at the self-gravitating radius becomes Mfrag ≈ 4π�H 2.
Using our solutions, we then obtain

Mfrag = 4π2 (πGQ0)−3/2

(
2a

3

)−1/2 (
μmH

kB

)−2

×
(
1 − βsg

)1/2

β2
sg

, (26)

where βsg represents value of this ratio at the self-gravitating radius.
Obviously, as the ratio βsg tends to unity which corresponds to a gas-
dominated region at the fragmentation boundary, the mass of the
fragments, Mfrag, decreases. But if radiation becomes significant
at the self-gravitating radius, which means βsg tends to zero, the
mass Mfrag becomes very large. Fig. 7 shows mass of the fragments
as a function of the accretion rate for different central masses,
i.e. M = 108 M	 (top) and M = 109 M	 (bottom). For finding
the location of the self-gravitating radius, different values of the
slope n are considered; however, both the radius rsg and the mass
Mfrag are independent of the slope n for low accretion rates. For
high accretion rates, on the other hand, the mass Mfrag depends
on both the accretion rate and the slope n. The profiles of Fig. 7
can be approximated as a function such as Mfrag ∝ ṁξ . We found
that ξ � 0.6 for low accretion rates. Curves corresponding to the
high accretion rates are labelled by a pair of numbers, i.e. (n, ξ ).
Note that although the fragmentation boundary and the mass of the
clumps at this radius are estimated, we can treat neither details of
fragmentation process nor the subsequent dynamical evolution of
clumps.

5 ESTIMATE O F THE MAXIMUM BH MASS

Observations have revealed that the mass of the SMBHs is between
105 and 1010 M	. Is there any limit on the maximum mass of an
SMBH? Theoretical attempts to address this question started by
Natarajan & Treister (2009) and then improved in some aspects by
King (2016) and Inayoshi & Haiman (2016). Most of the previous

Figure 7. Mass of the fragments at the self-gravitating radius, Mfrag, as a
function of the accretion rate for two accreting systems with M = 108 M	
(top) and M = 109 M	 (bottom). We found that Mfrag can be approximated
as a power-law function of the accretion rate, i.e. Mfrag ∝ ṁξ , where the
slope ξ depends on the accretion rate. For the low accretion rate, we have ξ �
0.6 and this slope is independent of n; however, for higher accretion rates,
each curve is labelled by a pair of numbers as (n, ξ ). A case corresponding
to n = 1.7 is shown by a dashed curve.

models for SMBH accretion disc, as we discussed earlier, predicted
that the disc extend up to the self-gravitating radius, and beyond this
radial distance, the disc is susceptible to GI and it may fragment
into clumps. Thus, the outer radius of an SMBH disc cannot be
larger than rsg. Our gravitoturbulent model confirms this finding;
however, the precise value of the self-gravitating radius depends
on the input parameters, namely, mass of the central BH and the
accretion rate. But the radius rsg should exceed the innermost stable
circular orbit rISCO, and if not, the disc accretion is suppressed. King
(2016) estimated the maximum mass of an SMBH following this
line of argument and found the upper limit to be 5 × 1010 M	
for typical input parameters. Despite important role of the radiation
pressure in the SMBH discs, however, the analysis of King (2016) is
restricted to a gas-pressure-dominated disc. King (2016) argues that
formation of a large radiation-dominated disc is not possible because
of the thermal instability; however, as Inayoshi & Haiman (2016)
stressed, the implication of the thermal instability in this context is
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not yet understood. Inayoshi & Haiman (2016) investigated a similar
problem using a disc model based on the Thompson et al. (2005)
model, which includes star formation and the radiation pressure
from the stars to maintain vertical hydrostatic equilibrium against
the gravity, and, instead of the usual α-prescription, the viscosity is
determined by assuming that the radial Mach number is a constant
input parameter. They demonstrated that growth of an SMBH is
prevented by the accretion physics such that BH maximum mass is
estimated to be between 1010 and 6 × 1010 M	.

Our analytical solutions enable us to estimate the SMBH maxi-
mum mass. We follow a similar approach to King (2016), in which
the accretion process is suppressed if the self-gravitating radius
shifts to a radius smaller than the innermost stable circular orbit,
i.e. rISCO. This radius is written as (King 2016)

rISCO = f (as)
GM

c2
, (27)

where f(as) is a function of the SMBH spin parameter as, i.e.
f(as)1/2[4 − (3f(as) − 2)1/2] = 3as (e.g. King 2016). For the di-
mensionless Kerr parameter as = −1, 0 and 1, we have f(as) = 9, 6
and 1, respectively. Up to now, we adopted a standard value for the
efficiency of the accretion (ε = 0.1); however, as we mentioned ear-
lier, its value depends on the SMBH spin. Bardeen (1970) showed
that

ε = 1 −
√

1 − 2

3f (as)
. (28)

Equation (25) gives self-gravitating radius as a function of the cen-
tral mass and the accretion rate for ε = 0.1. We can now rewrite
this equation, but keeping the accretion efficiency ε as an input
parameter given by equation (28). Thus,

rsg

rs
� 3 × 103ε0.28m−0.94ṁ−0.28. (29)

Our constraint to estimate SMBH maximum mass is rsg ∼ rISCO.
Thus, we have

Mmax = 1.05 × 1012M	ε0.28ṁ−0.28f −1.06. (30)

6 C O N C L U S I O N

We considered both the radiation and the gas pressures in a grav-
itoturbulent accretion disc and pursued its consequences in detail.
This approach permitted us to uniquely determine dimensionless
stress parameter which is inversely proportional to the cooling rate.
It prompted us to treat the onset of fragmentation of the disc in terms
of a critical value for the stress parameter, rather than in terms of
only Toomre parameter like most of the previous studies. The ben-
efit of our model is that it has only two input parameters M and Ṁ ,
whereas previous related models incorporate three input parameter,
i.e. M, Ṁ and α.

Our study is different from previous works on properties of
quasars discs in several ways:

(1) In contrast to all previous works, we account for the depen-
dence of dimensionless stress parameter on the properties of the
disc as a physical consequence of the thermal equilibrium of the
disc.

(2) While in previous works fragmentation of a quasar disc is ex-
plored via Toomre parameter, fragmentation of our gravitoturbulent
disc with a Toomre parameter close to its threshold is investigated
once dimensionless stress parameter becomes larger than a thresh-
old value.

(3) In contrast to the previous works on gravitational stability
of the gravitoturbulent discs, in the presence of radiation pressure,
this threshold of the instability is not fixed, and, it is a power-law
function of the ratio of the gas pressure and the total pressure with
an exponent about 1.7.

(4) We also estimated the BH maximum mass using our ana-
lytical gravitoturbulent model and found that the maximum mass
is consistent with the previous studies which rely on somewhat
different models.

Our results are also consistent with the numerical simulations.
Moreover, the present model enable us to investigate properties
of gravitoturbulent quasar discs over a wider range of the input
parameters. For instance, Jiang & Goodman (2011) investigated
gravitational stability of an accretion disc including dynamical and
thermal roles of radiation for a central BH with mass 108 M	. We
suggest this kind of numerical simulations should be extended to
the systems with a larger central mass even up to 109 or 1010 M	. In
these cases, our analytical solutions provide some physical insights
about typical behaviours that one may expect.

We note that a viscous formalism is not, in general, able to de-
scribe properties of a gravity-driven accretion disc due to inher-
ently non-local nature of the gravitational force (e.g. Balbus &
Papaloizou 1999). As long as the disc mass is much smaller than
the central object, however, numerical simulations show that vis-
cous approach is roughly adequate to the model structure of a disc
with the gravity-driven turbulence (Lodato & Rice 2004). More pre-
cisely, once the disc-to-star mass ratio exceeds around 0.5 and/or
the ratio of the disc thickness and the radial distance becomes larger
than 0.1, a global treatment of the angular momentum transport is
needed.

Our estimate of boundary fragmentation relies on the simulations
of self-gravitating discs which show that once the stress parameter
reaches to its critical value αC, then the disc is deemed to be subject
to fragmentation. In the absence of radiation, there are considerable
debates on the value of αC. For specific heat ratios γ = 2, Gammie
(2001) showed that αC � 0.07 which is supported by numerical
simulations of Rice et al. (2005), whereas Rafikov (2009) adopted
αC � 1 in agreement with simulations of star formation processes.
It has been argued that the disagreement may be due to numeri-
cal resolutions and recent high-resolution simulations indicate that
fragmentation occurs at smaller αC. In the absence of radiation, we
mainly adopted αC � 1 as our reference value and modified it as
αC � βn when radiation and gas pressures are considered. Some
authors, however, showed that the fragmentation boundary in the
absence of radiation occurs for a much smaller value about 0.06
(e.g. Rice et al. 2005). We think, therefore, if our modified critical
stress parameter is introduced as αC � 0.06βn, then self-gravitating
radius shifts towards central BH for a given set of the input param-
eters and the effect of the slope n appears to be the same as in those
cases which we explored in Figs 5 and 6.

It is also worth noting that boundary fragmentation in our model
is not stochastic. Recent studies showed that turbulent discs are
always gravitationally unstable in a probabilistic sense because of
the chaotic nature of the turbulence (e.g. Hopkins 2013). In the
realm of planet formation in PPDs, however, it was shown that the
stochastic fragmentation does not modify self-gravitating radius
by more than 20 per cent (Young & Clarke 2016). On the other
hand, formation of the first fragments in a PPD may cause further
fragmentation at smaller radii than initially expected (e.g. Armitage
& Hansen 1999; Meru 2015). Similar mechanisms may operate in
quasar discs, though it has not been investigated yet.

MNRAS 464, 4018–4027 (2017)

 at U
niversity of R

egina on D
ecem

ber 20, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Gravitoturbulent quasar discs 4027

AC K N OW L E D G E M E N T S

MS and FK thank the hospitality and support during their visit
to Niels Bohr Institute and Centre for Star and Planet Formation,
Denmark, where part of this work has been done. MS is grateful
to Iran Science Elites Federation for their support. SD is supported
by a Marie-Curie Intra European Fellowship under the European
Community’s Seventh Framework Program FP7/2007-2013 grant
agreement no. 627008.

R E F E R E N C E S

Armitage P. J., Hansen B. M. S., 1999, Nature, 402, 633
Balbus S. A., Papaloizou J. C. B., 1999, ApJ, 521, 650
Bardeen J. M., 1970, Nature, 226, 64
Bertin G., 1997, ApJ, 478, L71
Bertin G., Lodato G., 1999, A&A, 350, 694
Bertin G., Lodato G., 2001, A&A, 370, 342
Clarke C. J., 2009, MNRAS, 396, 1066
Collin S., Zahn J.-P., 1999, A&A, 344, 433
Collin S., Zahn J.-P., 2008, A&A, 477, 419
Cossins P., Lodato G., Clarke C. J., 2009, MNRAS, 393, 1157
Cossins P., Lodato G., Clarke C., 2010, MNRAS, 401, 2587
Gammie C. F., 2001, ApJ, 553, 174
Goodman J., 2003, MNRAS, 339, 937
Goodman J., Tan J. C., 2004, ApJ, 608, 108
Hopkins P. F., 2013, MNRAS, 430, 1653
Hopkins P. F., Quataert E., 2011, MNRAS, 415, 1027
Inayoshi K., Haiman Z., 2014, MNRAS, 445, 1549
Inayoshi K., Haiman Z., 2016, ApJ, 828, 110
Jiang Y.-F., Goodman J., 2011, ApJ, 730, 45
Johnson B. M., Gammie C. F., 2003, ApJ, 597, 131
Khajenabi F., Shadmehri M., 2007, MNRAS, 377, 1689
King A., 2016, MNRAS, 456, L109
Kratter K. M., Lodato G., 2016, ARA&A, 54, 271
Kratter K. M., Matzner C. D., Krumholz M. R., 2008, ApJ, 681, 375

Krumholz M., Burkert A., 2010, ApJ, 724, 895
Levin Y., 2007, MNRAS, 374, 515
Lin D. N. C., Pringle J. E., 1987, MNRAS, 225, 607
Lodato G., Bertin G., 2001, A&A, 375, 455
Lodato G., Rice W. K. M., 2004, MNRAS, 351, 630
McKernan B., Ford K. E. S., Lyra W., Perets H. B., 2012, MNRAS, 425,

460
Martin R. G., Livio M., 2013, MNRAS, 434, 633
Martin R. G., Lubow S. H., 2011, ApJ, 740, L6
Martin R. G., Lubow S. H., 2014, MNRAS, 437, 682
Matzner C. D., Levin Y., 2005, ApJ, 628, 817
Meru F., 2015, MNRAS, 454, 2529
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