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ABSTRACT
We present a model for the origin of the extended law of star formation in which the surface
density of star formation (�SFR) depends not only on the local surface density of the gas (�g)
but also on the stellar surface density (�∗), the velocity dispersion of the stars and on the
scaling laws of turbulence in the gas. We compare our model with the spiral, face-on galaxy
NGC 628 and show that the dependence of the star formation rate on the entire set of physical
quantities for both gas and stars can help explain both the observed general trends in the
�g − �SFR and �∗ − �SFR relations, but also, and equally important, the scatter in these
relations at any value of �g and �∗. Our results point out to the crucial role played by existing
stars along with the gaseous component in setting the conditions for large scale gravitational
instabilities and star formation in galactic discs.

Key words: ISM: structure – galaxies: evolution – galaxies: ISM – galaxies: kinematics and
dynamics – galaxies: star formation – galaxies: stellar content.

1 IN T RO D U C T I O N

The star formation rate (SFR) is the quantity that describes how galaxies convert their gas reservoirs into stars per unit time. Quantifying the
dependence of the SFR on the global properties of galaxies as well as on the local conditions within galaxies is essential towards understanding
their observed properties and their dynamical and chemical evolution across cosmic time. Traditionally, observational studies have sought
the correlation between the surface density of star formation (�SFR) and the surface density of the gas �g = �H I + �H2 , where �H I and �H2

are the surface densities of the neutral and molecular hydrogen, respectively. The emerging picture from all of these works is that �SFR ∝ �n
g

with n ≈ 1.4 (e.g. Schmidt 1959; Kennicutt 1998; Bigiel et al. 2008; Blanc et al. 2009). Other studies found that the surface density of star
formation scales linearly or sub-linearly (n � 1) with the surface density of molecular hydrogen traced by CO lines or with the surface density
of molecules that trace higher density gas such as HCN (e.g. Gao & Solomon 2004; Shetty, Kelly & Bigiel 2013; Liu et al. 2016). Several
ideas have been proposed in order to explain the origin of the star formation scaling relations. The earliest scenarios proposed that stars
form as a result of gravitational instabilities (GIs) in the gaseous component of galactic discs over a time-scale, which is the local free-fall
time of the gas and is given by tff,g ∝ ρ−0.5

g , where ρg is the local gas volume density. For a constant scaleheight of the disc, ρg ∝ �g and
thus �SFR ∝ �g/tff,g ∝ �1.5

g (e.g. Madore 1977). Wong & Blitz (2002) argued that the value of the star formation law slope is related to
the value of the molecular fraction fH2 = �H2/�g, and Blitz & Rosolowsky (2006) showed that fH2 can be related to the pressure of the
interstellar medium. It was also suggested that the value of n is related to the width of the density probability distribution function of the
interstellar gas and to the threshold density that is associated with the gas tracer (Tassis 2007; Wada & Norman 2007). Escala (2011) argued
that a correlation exists between the largest mass-scale for structures not stabilized by rotation and the SFR. Other groups (e.g. Krumholz &
McKee 2005; Hennebelle & Chabrier 2011; Padoan & Nordlund 2011; Federrath 2013; Kraljic et al. 2014) explored ideas based on the role
of turbulent fragmentation in giant molecular clouds (GMCs) and in which the SFR is a function of the dynamical properties of the clouds.
Meidt et al. (2013) argued that the SFR in molecular clouds in M51 may correlate with the intensity of the dynamical pressure the clouds are
subjected to. The role of feedback coupled to turbulent fragmentation and its effects on the regulation of the SFR on galactic scales have been
included in a number of models (e.g. Dopita 1985; Dopita & Ryder 1994; Dib et al. 2011a, Dib et al. 2011b; Dib 2011a,b; Renaud, Kraljic &
Bournaud 2012; Dib et al. 2013; Orr et al. 2017).
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It is however necessary to include stars in the treatment of GI on large scales in galactic discs, since in most disc galaxies, the stellar
surface density is observed to be a factor ≈10–100 larger than the gas surface density (e.g. Leroy et al. 2008). The role of existing stars in
determining the development of GIs has been investigated in a limited number of studies. Jog & Solomon (1984a,b) explored the characteristics
of the GI in a two fluid medium (gas and stars) in which both components interact gravitationally with each other and are treated each as an
isothermal gas with specific velocity dispersions. One of their main conclusions is that even when each fluid component is gravitationally
stable, the joint fluid system may be gravitationally unstable. Rafikov (2001) expanded the study of Jog & Solomon to the case where the
stars are treated as a collisionless component. Setting stars aside, Romeo, Burkert & Agertz (2010) investigated the role of turbulent motions
on the stability of galactic discs. They described interstellar turbulence using scaling laws that relate the size of a region to the gas surface
density (�g) and gas velocity dispersion (σ g). Romeo & Agertz (2014) investigated the development of GI for various regimes of turbulence
(i.e. different dependence of �g and �g on the physical scale). In parallel, Romeo & Wiegert (2011) and Romeo & Falstad (2013) proposed
a derivation of the effective Toomre Q parameter (Toomre 1964) for multicomponent discs of stars and gas and taking into account the
effects of disc thickness. Shadmehri & Khajenabi (2012) and Hoffman & Romeo (2012) coupled aspects of the analysis of Jog & Solomon
(1984a) to that of Romeo et al. (2010) and investigated the linear growth rate of the GI in a gas+star galactic disc while at the same time
accounting for the turbulent nature of the gas. On the observational side, Shi et al. (2011) showed that the scatter in the �g–�SFR relation
may be reduced if �SFR is a function that depends on both �g and �∗. When describing �SFR as the product of two power-law functions of
the gas and stellar surface densities (�SFR ∝ �α

g �β
∗ ). They obtained α = 0.8 ± 0.01 and β = 0.63 ± 0.01 from the combined measurements

on sub-galactic scales (scales of ≈750 pc) of 12 nearby galaxies, with a non-negligible galaxy-to-galaxy scatter when the data of each galaxy
is fitted individually (see also Westfall et al. 2014). Rahmani, Lianou & Barmby (2016) performed a similar study for the Andromeda galaxy,
and showed that these exponents may well depend on the distance from the centre of the galaxy. It is important to mention that the description
of the extended law of star formation as being the product of two power laws (for gas and stars) is an empirical one, and possibly is an
over-simplification of the physical processes that may be connecting the gas and stellar properties to the SFR.

However, in all of these above mentioned works, the origin of the dependence of the surface density of star formation on the local
properties of the gas and stars has not been explicitly quantified. In this work, we examine the role of GI in a two fluid medium (gas and
stars) and investigate the quantitative relationship between the surface density of the SFR and the surface densities and velocity dispersions
of the stellar and turbulent gaseous components.1 The basis of our model is that the fastest growing mode of the GI is the one that is directly
connected to the SFR. In Section 2, we recall the basic equations that lead to the derivation of the wavelength of the fastest growing mode
in a stellar+turbulent gas disc (λSF), and to the quantitative dependence of �SFR on λSF and other gas and stellar structural and dynamical
properties. In Section 3, we make a detailed comparison between the predictions of the �SFR from our model and the observed values for the
face-own, spiral galaxy NGC 628. We also discuss how including the effects of stellar feedback can affect, and in fact improve, the matching
between the models and the observations. In Section 4, we conclude.

2 TH E O R E T I C A L F R A M E WO R K

2.1 Derivation of the most unstable mode

The initial analytical formalism follows that of Jog & Solomon (1984a) for the two fluid approach, Romeo et al. (2010) concerning the
inclusion of the turbulent motions of the gas, and Shadmehri & Khajenabi (2012) who combined both aspects. We recall here some of the
basic assumptions. Both gas and stars in the disc are treated as isothermal fluids with velocity dispersions �g and σ ∗ and their unperturbed
surface densities are given by �g and �∗, respectively. The scaleheights of the gaseous and stellar components are given by hg and h∗,
respectively. Starting from the perturbed and coupled hydrodynamical gas-stars equations, and a solution for the perturbed quantities that has
the functional form exp [i (kr + ωt)], Jog & Solomon (1984a) derived the dispersion relation that describes the growth rate of the instability
in the linear regime, ω. This is given by the following biquadratic equation:

ω4 − ω2
(
α∗ + αg

) + (
α∗αg − β∗βg

) = 0, (1)

where

α∗ = κ2 + k2σ 2
∗ − 2πGk�∗

1

1 + kh∗
, (2)

αg = κ2 + k2�2
g − 2πGk�g

1

1 + khg
, (3)

β∗ = 2πGk�∗
1

1 + kh∗
(4)

βg = 2πGk�g
1

1 + khg
, (5)

1 Keeping with the terminology used in Shi et al. 2011, we also use the term ‘extended’ to describe the dependence of the SFR on physical quantities pertaining
to both gas and stars in galactic discs.
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where κ is the epicyclic frequency, and 1/(1 + khg) and 1/(1 + kk∗) are the reduction factors due to the gas and stellar discs thickness,
respectively (Vandervoort 1970; Romeo 1992). The solutions to equation (1) are given by

ω2 (k) = 1

2

[(
α∗ + αg

) ±
√(

α∗ + αg

)2 − 4
(
α∗αg − β∗βg

)]
. (6)

Only one of these roots allows for unstable modes to grow. This is given by

ω2
− (k) = 1

2

[(
α∗ + αg

) −
√(

α∗ + αg

)2 − 4
(
α∗αg − β∗βg

)]
. (7)

Inserting back the expressions of α∗, αg, β∗, βg from equations (2)–(5) into equation (7) and working in the limit where h∗k � 1 and hgk
� 1, i.e. in the limit of the thin disc approximation in which case the perturbations have a length-scale that is of the order of, or larger than,
the gaseous and stellar scalesheights, then equation (7) becomes

ω2
− (k) = κ2 +

(
σ 2

∗ + �2
g

)
2

k2 − πG
(
�∗ + �g

)
k

−k

2

[ (
σ 2

∗ − �2
g

)2
k2 + 4πG

(
σ 2

∗ − �2
g

) (
�g − �∗

)
k + 4π2G2

(
�∗ + �g

)2

]1/2

, (8)

which is independent of both h∗ and hg. While this assumption is not explicitly necessary if hg and h∗ are known, the advantage of applying
the thin disc approximation is that these two scales heights are generally poorly constrained for face-on disc galaxies. Under the plausible
assumption that the gaseous component is turbulent, the surface density and velocity dispersion of the gas are scale dependent and are assumed
to follow Larson type scaling relations (Larson 1981), and are given by

�g = �g0

(
k

k0

)−a

, (9)

and

�g = σg0

(
k

k0

)−b

, (10)

where a and b are descriptive of the nature of turbulent motions, and �g0 and vg0 are the surface density and velocity dispersion on the scale
of the spatial resolution of the observations (i.e. 2π/k0), respectively. Replacing equations (9)–(10) in equation (8) yields

ω2
− (k) = κ2 + σ 2

∗
2

k2 + σ 2
g0

2

(
k

k0

)−2b

k2 − πG

(
�∗ + �g0

(
k

k0

)−a
)

k

−k

2

[ (
σ 2

∗ − σ 2
g0

(
k

k0

)−2b
)2

k2 + 4πG

(
σ 2

∗ − σ 2
g0

(
k

k0

)−2b
) (

�g0

(
k

k0

)−a

− �∗

)
k

+ 4π2G2

(
�∗ + �g0

(
k

k0

)−a
)2 ]1/2

. (11)

We posit that the fastest growing mode is directly linked to the SFR. The fastest growing mode, kSF, can be obtained by requiring that

dω2
− (kSF)

dk
= 0, (12)

which is an equation that can be solved numerically. It is interesting to note that equation (12) possesses always a positive, non-zero root, for
any positive values of the exponents a and b when a < 1/2 and b < 1/2. These values are the typical upper limits measured for a and b in all
phases of the interstellar gas. The full analytical expression of equation (12) is of little direct interest here and is given in Appendix A. It also
implies that the SFR is independent of the galactic rotation (i.e. no dependence of κ). This is consistent with the findings of Dib et al. (2012),
who found no correlation between the star formation levels in Galactic molecular clouds and the degree of shear the clouds are subjected to.
Following the method of Dib et al. (2012), Thilliez et al. (2014) reached a similar conclusion for molecular clouds in the Large Magellanic
Cloud. It is useful to point out that our definition of the characteristic length-scale of the most unstable mode (λSF = 2π/kSF), which we
associate with star formation, is different from the one used by Romeo & Falstad (2013; see also Fathi et al. 2015). The latter authors define
the characteristic length-scale as being the scale at which the effective Toomre parameter drops below unity.

2.2 Connection to the SFR

The SFR can be directly related to the length-scale of the most unstable mode λSF. The mass of the gas that is associated with λSF is given by

MSF = ρ̄VSF, (13)
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where ρ̄ is the average density within the mass MSF, and VSF is the volume of the gravitationally unstable gas. In the limit of kSFhg � 1 as
adopted above, VSF is given by VSF = πλ2

SF2hg and the volume density of the gas can be replaced by the gas surface density. Thus, equa-
tion (13) becomes

MSF = �g

2hg
πλ2

SF2hg = �gπλ2
SF. (14)

The theoretical SFR is then given by

SFRth ≈ εff
MSF

tff
, (15)

where tff is the free-fall time of the unstable mass reservoir, and εff is the efficiency of the star formation process per unit free-fall time. We
approximate tff with 1/

√
Gρmp0, where ρmp0 is the gas volume density at the mid-plane. The mid-plane volume density can be written as

(e.g. Krumholz & McKee 2005)

ρmp0 ≈ πGφP �2
g0

2σ 2
g0

, (16)

where �g0 and σ g0 carry the same meaning as in Section 2.1 and with φP being a term of order unity that describes the contribution of stars
to the mid plane pressure. An approximation of φP is given by (e.g. Elmegreen 1989)

φP ≈ 1 + �∗
�g0

σg0

σ∗
. (17)

With these approximations, tff can be written as

tff =
√

2

π

1

G

σg0

�g0

(
1 + �∗

�g0

σg0

σ∗

)−1/2

. (18)

Combining equations (14) and (18) yields the expression for the SFRth:

SFRth = εff
π3/2

21/2
Gλ2

SF

�2
g0

σg0

(
1 + �∗

�g0

σg0

σ∗

)1/2

. (19)

The theoretical estimate of the surface density of the SFR is then simply given by

�SFR,th = SFRth

S
, (20)

where S is the surface area covered by the beam size in the observations.

3 A P P L I C ATI O N TO N G C 6 2 8

We test our model by comparing its predictions to the face-on, spiral galaxy NGC 628. The values of �H I and σH I for NGC 628 are derived
from the moment 0 and moment 2 maps of The H I Nearby Galaxy Survey (THINGS; Walter et al. 2008). The spatial resolution (i.e. beam
size) for these observations at the distance of NGC 628 are 750 pc, thus, the surface area of the resolution element in NGC 628 used in this
work is S = 750 × 750 pc2. As in Shi et al. (2011), the values of �H2 are derived from the moment 0 CO J = 1–0 BIMA SONG survey (Helfer
et al. 2003), and the stellar surface density is taken from the SIRTF Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003). Since the H I gas is
ubiquitously present in the galaxy, we approximate the velocity dispersion of the gas as being the velocity dispersion of the H I gas, �g ≈ σH I.
Measurements of the stellar velocity dispersions in nearby galaxies are scarce. Yet, the VENGA survey has made such measurements, with
selected mosaics, for a sample of nearby galaxies, including NGC 628 (Blanc et al. 2013). We use the same local observational estimates of
�SFR for NGC 628 (hereafter �SFR,obs) as in Shi et al. (2011), which are based on a combination of GALEX far-UV measurements (Gil de
Paz, Boissier & Madore 2007) and Spitzer 24 μm (Kennicutt et al. 2003) and which have a 3σ lower limit of 10−4 M� yr−1 kpc−2.

For each resolution element in NGC 628 with measurements in the VENGA survey, we estimate the value of λSF by solving equation
(12). We then use equations (19) and (20) to evaluate the theoretical values of the SFR (SFRth) and the surface density of the SFR, �SFR,th.
The number of resolution elements in NGC 628 that simultaneously have σ ∗ measurements in VENGA as well as measured values of �SFR,obs

is 91. Fig. 1 displays the distribution function of λSF for these pointings, obtained for a = b = 1/3. The values of a = 1/3 and b = 1/3 are
consistent with average values of these quantities derived using cold H I intensity fluctuations (Lazarian & Pogosyan 2000; Elmegreen, Kim
& Staveley-Smith 2001; Begum, Chengalur & Bhardwaj 2006; Dutta et al. 2009). The distribution in Fig. 1 peaks at ≈850 pc and is positively
skewed towards larger values, and we argue in Appendix B that this result is not dependent on the spatial resolution of the observations. While
there are no accurate estimates of the vertical scales heights of gas and stars in NGC 628,2 the values of λSF are large enough such that the

2 Kregel, van der Kruit & de Grijs (2002) argued that there is a constant ratio of the radial to vertical length-scales in galactic discs of l∗/h∗ ≈, 7.3 ± 2.2. With
the measured value of l∗ ≈ 2.3 kpc in NGC 628 (Leroy et al. 2008), this yields a value of h∗ ≈ 315 pc, under the assumption that h∗ is independent of galactic
radius. From an analysis of the H I line power spectrum, Dutta et al. (2008) argued for an upper limit on the H I gas vertical scales height of 800 pc.
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The extended law of star formation 1525

Figure 1. Distribution function of the wavelength of the most unstable mode λSF for the sample of data points that are used in this study (see text for the
selection criteria) and for values of a = 1/3 and b = 1/3. The spatial resolution of the observations (λ0 = 750 pc) is shown with the dashed line.

Figure 2. Distribution function of the ratio of the theoretical estimate of the SFR (SFRth) to the observed one (SFRobs) for the sample of data points that are
used in this study (see text for the selection criteria) and for values of a = 1/3, b = 1/3 and εff = 0.8 per cent.

condition λSF � 2πhg and λSF � 2πh∗ seems to be reasonably fulfilled for almost all resolution elements. The values of SFRth and �SFR,th

are then derived following the formalism given in Section 2.2 with an assigned value of εff = 0.008. A value of 0.008 for εff is consistent
with the Galaxy-wide average value of ≈0.006 (Krumholz & Tan 2007; Murray 2011), and with the average value of εff ≈ 0.01 found in
numerical simulations (e.g. Semenov, Kravtsov & Gnedin 2016, see fig. 2 in their paper). This value is a factor ≈10 smaller than the average
value measured on the scale of GMCs in the Galaxy (Murray 2011). This is expected since the gas is denser and more gravitationally bound
in GMCs than the spatially averaged gas densities on scales of 750 pc (as are the observations of NGC 628) or on entire galactic scales.

Fig. 2 displays the distribution function of the ratio of the theoretical to observational SFRs (SFRth/SFRobs). The dispersion in this
distribution is ≈0.3 dex. Fig. 3 displays the scatter plots in the �g − �SFR space (left-hand column) and in the �∗ − �SFR space (right-hand
column). The observations are shown with the red open triangles, and the theoretical estimates are shown with the black open diamonds (top)
and as a closed contours containing 68 per cent of the theoretical points (bottom). A noticeable aspect of Fig. 3 is that in the low surface
density regime (�g � 10–15 M� pc−2), the model matches perfectly the data, both in terms of the dependence of �SFR on �g and �∗ and in
terms of the level of dispersion at any given value of �g and �∗. At higher surface densities (�g � 15 M� pc−2), the theoretical estimates
of �SFR are larger than the observed ones by factors of ≈2–5. It is important to note that our formalism does not account explicitly for the
effects of feedback from massive stars, which are more important at higher surface densities where more massive clusters can form. The
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1526 S. Dib, S. Hony and G. Blanc

Figure 3. The surface density of the SFR plotted as a function of the total gas surface density (left-hand panels) and stellar surface density (right-hand
panels). The observational data are shown with the red open triangles. The theoretical estimates from the model are shown with the open black diamonds (top
panels), and as a closed contour containing 68 per cent of the estimates (bottom panels). The free parameters of the model are taken to be a = b = 1/3 and
εff = 0.8 per cent. Here, �g0 is the total surface density of the gas measured on a spatial scale, which is equal to the spatial resolution of the observations (i.e.
750 pc).

increased effect of feedback at high surface densities leads to a more rapid expulsion of the gas from the clusters and to a reduction of the star
formation efficiency per unit time (Dib 2011a). Dib (2011a), showed that in the surface density regime relevant for this work (1 M� pc−2 �
�g � 50 M� pc−2), the value of the star formation efficiency per free-fall time (εff) decreases by a factor of ≈4 going from low to higher gas
surface densities, and this is valid for any given value of the gas phase metallicity. Using a scaling of εff as a function of �g (εff ∝ �−0.34

g )
(Dib 2011a), and fixing the value of εff = 0.008 at �g = 1 M� yr−1, we make a new estimate of �SFR,th. The distribution function of the
ratio SFRth/SFRobs in the presence of the effects of feedback is displayed in Fig. 4. While the distribution in Fig. 4 does not peak at unity
(because of the arbitrary choice of fixing εff = 0.008 at �g = 1 M� yr−1), the inclusion of a correction due to feedback removes the positive
skewness of the distribution (i.e. at high surface densities) and leads to a quasi-symmetric dispersion around each side of the observations.
Fig. 5 displays the corresponding scatter plots for �SFR versus �g and �∗ (left- and right-hand panels, respectively). The figure shows that
the inclusion of feedback in the treatment of GI in a star+gas galactic disc is necessary in order to better match the observed dependence of
�SFR on both �g and �∗.

4 C O N C L U S I O N S

In this work, we explore the dependence of the surface density of star formation in galactic discs on the gas and stellar surface densities
and velocity dispersions. We treat both gas and stars as an isothermal fluid and use the linear stability analysis of the gravitationally coupled
hydrodynamical equations in order to derive the wavelength of the most unstable mode of the GI (λSF). We find that the latter quantity is a
function of the stellar surface density, the gas surface density, the velocity dispersion of stars and the scaling laws of turbulence in the gas
phase. When applying our model to the face-on, spiral galaxy NGC 628, for which all the required observational data are available, we find
that the distribution of λSF for the ensemble of resolution elements for which the required stellar+gas data is available peaks at ≈850 pc and
is skewed towards higher values (with a tail of the distribution up to ≈2.5 kpc; see Fig. 1). GIs on such large scales are likely to determine the
rate of GMC formation. In turn, stars form in GMCs with a distribution of the star formation efficiencies that depend on the distribution of
GMC masses, and on the distributions of their internal physical and dynamical properties coupled to a regulation provided by stellar feedback
(e.g. Padoan & Nordlund 2011; Dib et al. 2013). It is therefore reasonable to assume that reservoirs of gas that become gravitationally unstable
on large scales are correlated with the SFR on these scales. For a given set of physical conditions in each resolution elements of NGC 628,
we derive the theoretical value of the SFR under the assumption that the fastest growing mode of the gas+star GI is directly linked to the
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The extended law of star formation 1527

Figure 4. Similar to Fig. 2, but in this case, the efficiency of star formation per unit free-fall time is taken to depend on the gas surface density following
εff ∝ �−0.34

g and normalized to be 0.8 per cent at �g = 1 M� pc−2.

Figure 5. Similar to Fig. 3, but in this case, the efficiency of star formation per unit free-fall time is taken to depend on the gas surface density following
εff ∝ �−0.34

g and normalized to be 0.8 per cent at �g = 1 M� pc−2. Here, �g0 is the total surface density of the gas measured on a spatial scale, which is
equal to the spatial resolution of the observations (i.e. 750 pc).

SFR. The theoretical surface density of the SFR (�SFR,th) is obtained by dividing the SFR by the physical surface area of the surface element
in the observations. The only free parameters of the models are the exponents of the turbulence scaling laws of the gas (i.e. a, and b which
are the exponents of the gas surface density and velocity dispersion size relations, see equations 10 and 11) and the star formation efficiency
per unit free-fall time, εff. The values of a and b, and εff are fixed at a = b = 1/3 and εff = 0.8 per cent, respectively. These values of a and b
are appropriate for the description of the structure and velocity dispersion of the cold neutral hydrogen in the disc galaxies. A fixed value of
εff serves only as a normalization, and does not affect neither the shapes of the �g–�SFR and �∗–�SFR relations, nor the amount of scatter at
any fixed value of �g or �∗.

We find an encouraging match between the theoretical estimates of the surface density of star formation �SFR,th from our model and
the observational values for NGC 628 (�SFR,obs), both in terms of the shapes of the �g–�SFR and �∗–�SFR scatter relations and in terms
of the dispersion of the data points at fixed values of �g or �∗. The model-observations matching is further improved if the value of εff is
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taken to decrease with increasing gas surface density as earlier suggested by Dib (2011a,b). The origin of the dependence of εff on �g is
attributed to the effects of feedback in the pre-supernova phase in stellar clusters. More massive clusters are more likely to form at higher
surface densities. Gas expulsion from more massive clusters occurs on shorter time-scales than in lower mass clusters (Dib et al. 2013), and
the rapid expulsion of gas results in a faster quenching of star formation and to a reduction of the star formation efficiency per unit time.
Our model opens a new path towards a better understanding of the dependence of the SFR in galaxies on the local stellar and gas properties.
Higher spatial and spectral resolution observations will allow us to further constrain the model and will also help reduce the number of free
parameters by directly measuring the scaling laws of turbulence.
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A P P E N D I X A : G OV E R N I N G E QUAT I O N F O R kSF

The derivation of the wavenumber of the fastest growing mode of the instability, kSF, is achieved using equation (12), where ω2
− is given by

equation (11). There exist an analytical expression for the general equation of kSF, which is given by
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. (A2)

Given the values of k0 = 2π/λ0, where λ0 is the physical size of the resolution element in the observations. For each resolution element of
the NGC 628 galaxy, we solve equation (A1) numerically using a globally convergent Broyden’s method (Press et al. 1992)

A P P E N D I X B: D O TH E R E S U LTS D E P E N D O N T H E S PAT I A L R E S O L U T I O N O F T H E
O B S E RVATI O N S ?

The question may arise whether the solutions obtained for λSF using equation (12) (i.e. equation A1 in its detailed form) depend on the spatial
resolution of the observations (here λ0 = 750 pc). It should be noted that the surface density and velocity dispersion of the gas have a scale
dependance on the dimensionless number k/k0 (and not merely on k0). None the less, we test this by performing the following simple test. We
assume that the observations have been performed on a spatial resolution of 375 pc (thus k0 is now replaced by 2k0, where k0 is the wavenumber
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Figure B1. Same as Fig. 1 but for an adjusted spatial resolution in the observation of 375 pc (shown as the dashed line). The values of the parameters are kept
at a = 1/3 and b = 1/3.

Figure B2. Similar to Fig. 4, but in this case, we assume a spatial resolution of 375 pc (marked in the figure by the dashed line). The stellar surface density
and velocity dispersion are kept to their similar value for the resolution of 750 pc, and the surface density and velocity dispersion of the gas are adapted using
equations (10) and (11), respectively.

associated with the original spatial resolution of 750 pc). We do not possess observations that have been obtained self-consistently at a spatial
resolution that is half of the spatial resolution of the observations at hand. However, we adapt the current observations to present those that
could be obtained with an improved spatial resolution by a factor 2. In the absence of a better guess, the stellar surface density and velocity
dispersion for the resolution λ0/2 are kept the same as on the scale λ0. The velocity dispersion and surface density of the gas in equations
(10) and (11) have to be multiplied by the factors 2−β and 2−α , respectively. For α = β = 1/3, the gas velocity dispersion and surface density
are both reduced by a factor 2−1/3. These assumptions generate only approximate conditions for the stellar and gas components in each
constructed half-resolution element as one expects that there would be local fluctuations of the stellar velocity and surface density on smaller
scales.

Fig. B1 displays the distribution of the wavelengths of the most unstable mode (λSF) with the new adopted spatial resolution. As
expected, the choice of a different spatial resolution (here a higher resolution) does not affect the results and the distribution of λSF still
peaks at ≈850–900 pc. For this same adopted spatial resolution, Fig. B2 displays the ratio of the theoretical to observed SFRs, while Fig. B3
displays the surface density of the SFR as a function of the surface density of the gas (left-hand panels) and of the stars (right-hand panels;
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Figure B3. Similar to Fig. 5, but in this case, we assume a spatial resolution of 375 pc. The stellar surface density and velocity dispersion are kept to their
similar value for the resolution of 750 pc, and the surface density and velocity dispersion of the gas are adapted using equations (10) and (11), respectively.
Here, �g0 is the total surface density of the gas measured on a spatial scale, which is equal to the adjusted spatial resolution of the observations (here 375 pc).

for the model as a scatter plot in the top panels and as a closed 1σ contour in the bottom panels). In this case, the efficiency of star formation
per free-fall time εff has been taken to include a correction for feedback (i.e. as in Figs 4 and 5). The existence of more outliers that result in a
larger scatter is probably due to the approximations made in constructing the physical quantities (especially �∗ and σ ∗) for the higher spatial
resolution case.
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