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ABSTRACT
In this note we present a modification in the EM algorithm for the destruc-
tive negative binomial cure rate model. This alteration enables us to obtain
the estimates of the whole parameter vector from the complete log-
likelihood function, avoiding the corresponding observed log-likelihood
function, which is more involved. To achieve this goal, we resort to themix-
ture representation of the negative binomial distribution in terms of the
Poisson and gamma distributions.
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1. Introduction

The destructive negative binomial model (DNB) proposed in [1] can be described in the following
way. Let M be a random variable denoting the initial number of carcinogenic cells of an individual.
In their work, the authors used the weighted Poisson distribution for M, but for our purposes we
only present the negative binomial model (a distribution in that class) with probability mass function
given by

P(M = m; θ ,φ) = �(φ−1 + m)
m!�(φ−1)

(
φθ

1 + φθ

)m
(1 + φθ)−φ

−1
, m = 0, 1, 2, . . . . (1)

We denote the distribution in Equation (1) as NB(φ,φθ/[1 + φθ]). Suppose that only D (≤ M)
cells remain active to result in a new tumour (also called damaged cells) with probability p. We may
associate to the jth cell a Bernoulli random variable ζj, independent ofM, so that P(ζj = 1) = p and

D =
{
ζ1 + · · · + ζM if M > 0,
0 if M = 0.

Notice that ifD= 0 orD> 0, the individual is termed cured or non-cured, respectively. For a cured
individual, the event of interest (e.g. death due to cancer) will never occur. Assuming independence
among the random variables ζj, j = 1, 2, . . ., it is clear that the distribution of D conditioning on
M=m is Bin(m, p) ifm> 0 and P(D = 0 | M = 0) = 1. For non-cured individuals, defineWa as the
random variable denoting the time taking for the ath cell to produce a detectable cancer. AssumeWa,
a = 1, 2, . . . ,D, are conditionally independent givenD=d and identically distributed with common
cumulative distribution function (cdf)F(t;λ), where λ is a set of unknown parameters. The cdf F is
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a proper function in the sense that limt→∞ F(t;λ) = 1. The time until the event of interest can be
represented by T = min{Wa, 0 ≤ a ≤ D}. Under such conditions, the (improper) survival function
for T is given by

Spop(t; θ , p,φ) = [1 + φθpF(t;λ)]−φ
−1
.

For cured individuals, we define P(W0 = ∞) = 1. The cure fraction of the model is given by
Spop(∞; θ , p,φ) = (1 + φθ)−φ−1

.
Assume that data where obtained subject to right censoring. Specifically, assume that the observ-

able data for the ith individual can be represented by random variables Ti = min(T∗
i ,Ci) and δi =

I(T∗
i ≤ Ci), i = 1, . . . , n, with T∗

i and Ci denoting failure and censoring times, respectively. More-
over, assume that for each individual we associate a set of covariates z1i (a r1 × 1 vector) related to
the initial number of cells and z2i (a r2 × 1 vector) associated with the parameters in Equation (1), in
such way that

log(θi) = z�
1iβ1 and log

(
pi

1 − pi

)
= z�

2iβ2, i = 1, . . . , n. (2)

Note that z1 and z2 do not share common elements and β1 does not include an intercept to
circumvent identifiability problems in the sense of Li et al. [2].

This work is organized as follows. In Section 2, we present a new way to perform the parameter
estimation for the DNB model. In Section 3, we present in detail the modified EM algorithm for
this model. Section 4 presents a comparison with other proposals to obtain estimates in a real data
set. Finally, in Section 5 we present some remarks. For the sake of space, we concentrate on the EM
algorithm and omit details such as the likelihood function for the model. Interested readers can refer
to Cancho et al. [3] and Gallardo et al. [4].

2. The proposal

In the work by Gallardo et al. [4] dealing with the destructive negative binomial cure rate model, an
EM algorithm is proposed to estimate β1, β2 and λ separately instead of performing the maximiza-
tion with respect to all components, sayψ = (β1,β2,φ,λ). However, the solution in that proposal to
estimate φ in the destructive negative binomial cure rate model (DNB) is to construct a set of values
for φ and choose the value that maximizes the profile log-likelihood function (see Section 4). A sim-
pler solution is to assume that φ is known (see, for instance, Cancho et al. [3]). The negative binomial
distribution ofMi in Equation (1) is equivalent to consider

Mi | Yi = yi ∼ Poisson(yi) and Yi ∼ Gamma(φ−1,φθi), i = 1, . . . , n,

where Y ∼ Gamma(a, b) denotes the gamma distribution with density function f (y; a, b) =
baya−1 e−by/�(a), for y> 0. The observed data is denoted by Dobs = (t, δ). On the other hand,
now the complete data areDcomp = (t, δ,D,M,Y), whereM = (M1, . . . ,Mn),D = (D1, . . . ,Dn) and
Y = (Y1, . . . ,Yn) denote the latent variables. The density function for the complete data is given by

f (ti, δi, di,mi, yi; θi, pi,φ,λ) = f (ti, δi | Di = di)P(Di = di | Mi = mi; pi)

× P(Mi = mi | Yi = yi)fYi(yi; θi,φ)

= S(ti;λ)di−δi[dif (ti;λ)]δi
(
mi

di

)
pdii (1 − pi)mi−di y

mi
i
mi!

e−yi

× (φθi)
φ−1

�(φ−1)
yφ

−1−1
i e−φθiyi , δi ≤ di ≤ mi, yi > 0, (3)

for i = 1, . . . , n. Based on (3), we establish the following proposition.
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Proposition 2.1. For the DNB model, the conditional distributions of (i) Mi − δi given Yi = yi and
Dobs and (ii) Yi given Dobs are

Mi − δi | Yi = yi,Dobs;ψ ∼ Poisson(yi[1 − piF(ti;λ)])

and

Yi | Dobs;ψ ∼ Gamma
(
φ−1 + δi,

1 + φθipiF(ti;λ)
φθi

)
,

for i = 1, . . . , n.

The proof of Proposition 2.1 is given in the appendix. The following corollary is immediate from
Proposition 2.1.

Corollary 2.1. The expected values of (i) Yi given Dobs and (ii) log(Yi) given Dobs are

(i) E(Yi | Dobs;ψ) = (1 + φδi)θi

1 + φθipiF(ti;λ)

and

(ii) E(log(Yi) | Dobs;ψ) = η(φ−1 + δi)+ log(φ)+ log(θi)− log(1 + φθipiF(ti;λ)),

for i = 1, . . . , n, where η(·) denotes the digamma function.

Moreover, note that

E(Mi − δi | Dobs;ψ) = E(E(Mi − δi | Yi,Dobs;ψ) | Dobs;ψ)

= [1 − piF(ti;λ)]E(Yi | Dobs;ψ)

= (1 + φδi)θi[1 − piF(ti;λ)]
1 + φθipiF(ti;λ)

,

for i = 1, . . . , n, agreeing with Corollary 1 in [4]. In the sequel we present a modification in the EM
algorithm for the DNB model.

3. Amodification in the EM algorithm

From (3), up to a constant that does not depend on ψ , the complete log-likelihood for ψ can be
written as

�c(ψ ;Dcomp) =
n∑

i=1

{
Di log(S(ti;λ))+ δi log(h(ti;λ))+ Di log(pi)+ (Mi − Di) log(1 − pi)

−φ−1[log(θi)+ log(φ)− log(Yi)] − Yi

φθi

}
− n log(�(φ−1)),

whereh(t;λ) = f (t;λ)/S(t;λ) is the hazard function. Letψ (k) = (β
(k)
1 ,β(k)2 ,φ(k),λ(k))be the estimate

ofψ at the kth iteration of the EM algorithm and denote the conditional expectation of �c(ψ | Dcomp)
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given the observed data by Q(ψ | ψ (k)). With these notations, we have that

Q(ψ | ψ (k)) = Q1(ξ | ψ (k))+ Q2(β2 | ψ (k))+ Q3(λ | ψ (k)),

with ξ = (β1,φ),

Q1(ξ | ψ (k)) =
n∑

i=1

{
φ−1(l̃og(Y(k)i )− log(θi)− log(φ))− Ỹ(k)i

φθi

}
− n log(�(φ−1))+ C1, (4)

Q2(β2 | ψ (k)) =
n∑

i=1
{D̃(k)i log(pi)+ (M̃(k)

i − D̃(k)i ) log(1 − pi)} + C2 and (5)

Q3(λ | ψ (k)) =
n∑

i=1
{D̃(k)i log(S(ti;λ))+ δi log(h(ti;λ))} + C3, (6)

where D̃(k)i = E(Di | Dobs;ψ (k)), M̃
(k)
i = E(Mi | Dobs;ψ (k)), Ỹ

(k)
i = E(Yi | Dobs;ψ (k)), l̃og(Y

(k)
i ) =

E(log(Yi) | Dobs;ψ (k)) andC1,C2 andC3 do not depend on ξ ,β2 and λ, respectively. The expressions
of D̃(k)i and M̃(k)

i are provided in [4], whereas Ỹ(k)i and l̃og(Y(k)i ) can be computed using Corollary 2.1.
The advantage of this approach is that we do not need to fix φ and build the profile log-likelihood for
it. Instead, φ can be introduced in the estimation procedure and all parameters are estimated from
the complete log-likelihood function, so that the more involved observed log-likelihood function, as
in [4], is avoided.

In short, the kth iteration of the algorithm comprises the following steps:

• E-step: For i = 1, . . . , n, compute

D̃(k)i = δi + (1 + φ(k−1)δi)θ
(k−1)
i p(k−1)

i S(ti;λ(k−1))

1 + φ(k−1)θ
(k−1)
i p(k−1)

i F(ti;λ(k−1))
,

M̃(k)
i = δi + (1 + φ(k−1)δi)θ

(k−1)
i [1 − p(k−1)

i F(ti;λ(k−1))]

1 + φ(k−1)θ
(k−1)
i p(k−1)

i F(ti;λ(k−1))
,

Ỹ(k)i = (1 + φ(k−1)δi)θ
(k−1)
i

1 + φ(k−1)θ
(k−1)
i p(k−1)

i F(ti;λ(k−1))
and

l̃og(Y(k)i ) = η[φ−1(k−1) + δi] + log(φ(k−1))+ log(θ(k−1)
i )

− log(1 + φ(k−1)θ
(k−1)
i p(k−1)

i F(ti;λ(k−1))).

• M-step: Given D̃(k) = (D̃(k)1 , . . . , D̃(k)n ), M̃(k) = (M̃(k)
1 , . . . , M̃(k)

n ), Ỹ(k) = (Ỹ(k)1 , . . . , Ỹ(k)n ) and
l̃og(Y(k)) = (l̃og(Y(k)1 ), . . . , l̃og(Y(k)n )), find ξ (k), β(k)2 and λ(k) that maximize (4), (5) and (6) with
respect to ξ ,β2 and λ, respectively.

Maximization of Equations (4)–(6) can be performed using extant software; e.g. with the optim
function in R [5]. Finally, the covariance matrix of the maximum likelihood estimator ψ̂ can be esti-
mated based on the Hessian matrix of the log-likelihood function. The package numDeriv [6] in R
provides a good numerical approximation to this matrix.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 5

4. Application

In order to illustrate the efficiency of our proposal, we present an application to a well-known data set
on a phase III cutaneousmelanoma clinical trial available at http://merlot.stat.uconn.edu/∼mhchen/
survbook/, labelled as E1690 data. The clinical trial was conducted by the EasternCooperativeOncol-
ogy Group (see [7], for details). The main goal of the study was to assess a postoperative treatment
performance with a high dose of the drug Interferon alpha-2b, in order to prevent recurrence. The
study included patients between 1991 and 1995 and follow-up was conducted until 1998.

A characteristic of this disease is the presence of a proportion of patients that can lead a normal
life, comparable (in longevity) to patients without the disease. In other words, a proportion com-
monly known as ‘cured’. After deleting patients with incomplete data andmissing observation times,
the data set is composed by n= 408 individuals. The collected variables were (SD stands for standard
deviation): observed time (in years, average = 2.31 and SD = 1.93), treatment (0: control and 1: inter-
feron alfa-2b with 198 and 210 patients, respectively), age (in years, average = 48.1 and SD = 13.1),
nodal category (categorical variable with levels 1–4 with 110, 131, 86 and 81 patients in each group,
respectively, where 1 indicates the lower risk patients and 4 the higher risk patients) and tumour thick-
ness (in mm, average = 3.98 and SD = 3.22). Figure 1 displays the Kaplan–Meier curves by nodule
category, confirming a well pronounced plateau in all nodule categories.

For this data set we fit theDNB applying the EMalgorithm in theway presented in [4] (i.e. building
a profile log-likelihood approach for φ) and our proposal, where φ is included in the estimation pro-
cedure. For the time-to-event of the cells, we consider theWeibull distribution that is a suitablemodel
in this biological context. Specifically, we consider the parametrization such as S(t;λ) = exp{−eαtν}.
Following Cancho et al. [3]in Equation (1), we link the covariates nodule and thickness to θ and treat-
ment to p. A routine was developed in R language and is available from the authors upon request. We
ran the program in a computer equipped with an AMDA6-6310 APU processor with 1.80GHz and a
RAMmemory of 8GB. Table 1 shows the estimates using both methods. Note that all estimates from
the two models are close. However, the runtime using our proposal is much lower. The reduction in
the runtime is explained by the fact that the EMalgorithmbased on the profile log-likelihood function
should be applied to a set of values for φ. The results in Table 1 correspond to a search beginning with
the set {1, 2, . . . , 10}. Let φ∗ be the value of φ in this set that maximizes the observed log-likelihood
function. With this value, a new set {φ∗ − 9/10,φ∗ − 8/10, . . . ,φ∗ + 9/10} is formed. From this set
we update φ∗. The process is iterated taking sets with increments divided by 10 (1, 1/10, 1/100 and so
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Figure 1. Kaplan–Meier curves stratified by nodule category.

http://merlot.stat.uconn.edu/~mhchen/survbook/
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Table 1. Parameter estimates (Est.) and standard errors (SE) for the DNB model.

EM algorithm

Profiling φ Our proposal

Parameter Est. SE Est. SE

β1,nodule1 0.468 0.619 0.459 0.618
β1,nodule2 1.515 0.771 1.514 0.769
β1,nodule3 2.154 0.895 2.153 0.893
β1,nodule4 3.071 0.943 3.070 0.941
β1,thickness 0.086 0.049 0.086 0.049
β2,treatment −0.796 0.455 −0.796 0.454
α −1.315 0.441 −1.314 0.440
ν 1.537 0.196 1.537 0.196
φ 3.181 1.320 3.177 1.317

Runtime (in minutes) 63.86 0.89

0 100 200 300 400

0

10

20

30

40

50

Patient

D

Figure 2. Index plot of the predicted number of activated carcinogenic cells (D).

on). The refinements stop when the difference between two successive estimates of φ attains a fixed
tolerance. As an alternative, a fixed set can be chosen. However, often this choice is not obvious and
can involve trial and error steps, as well as refinements of a coarser set. Therefore, both approaches are
potentially time-consuming. On the other hand, under our proposal φ is included in the estimation
process through the maximization of the function in Equation (4). In Table 1 the two versions of the
EM algorithm were run with tolerance for φ equal to 0.0001.

Finally, Figure 2 presents the predictions of the number of activated carcinogenic cells (D) obtained
from the EM algorithm. As the patients are sorted according to the observed times (in increasing
order), it is expected that the first patients presented more activated carcinogenic cells than the last
patients, as shown in the figure. The predicted values ofD are a by-product of the EM algorithm and
can be useful for understanding the carcinogenesis process.

5. Conclusion

In this work, we developed amodification in the EMalgorithmdescribed byGallardo et al. [4] leading
us to a more efficient estimation procedure. Differently from that work, the precision parameter φ is
not estimated by profiling the observed log-likelihood function, but instead it is directly included in
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the estimation procedure via themaximization of the complete log-likelihood function. The efficiency
of the method is illustrated with a real data set. In our example, adopting the EM algorithm in this
work, the runtime was reduced by a factor of about 72 relative to the proposal in [4].We envision that
a similar strategy could be applied to other cure models built on the negative binomial distribution.
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Appendix. Proof of Proposition 2.1
From Equation (3), we obtain

f (ti, δi,mi, yi;ψ) =
mi∑
di=0

f (ti, δi, di,mi, yi)

=
[
f (ti;λ)
S(ti;λ)

]δi
(1 − pi)mi fYi (yi; θi,φ)

mi∑
di=δi

dδii

(
mi

di

) [
piS(ti;λ)
1 − pi

]di

= [pif (ti;λ)]δi [1 − piF(ti;λ)]mi−δi fYi (yi; θi,φ) e
−yi ymi

i
(mi − δi)!

,

and f (ti, δi;ψ) is provided in the appendix in [4]. Therefore,

f (mi, yi | Dobs;ψ) = f (ti, δi,mi, yi;ψ)
f (ti, δi;ψ)

=
[pif (ti;λ)]δi [1 − piF(ti;λ)]mi−δi e−yi ymi

i
(mi−δi)!

(φθi)
φ−1

�(φ−1)
yφ

−1−1
i e−φθiyi

[θipif (ti;λ)]δi [1 + φθipiF(ti;λ)]−(φ−1+δi)

= (α∗
i )

mi−δi

(mi − δi)!
e−α

∗
i︸ ︷︷ ︸

Mi−δi|Yi=yi ,Dobs;ψ∼Poisson(α∗
i )

× (θ∗
i )
φ∗
i

�(φ∗
i )

yφ
∗
i −1

i e−θ
∗
i yi︸ ︷︷ ︸

Yi|Dobs;ψ∼Gamma(φ∗
i ,θ

∗
i )

,

where α∗
i = yi[1 − piF(ti;λ)], θ∗

i = [1 + φθipiF(ti;λ)]/φθi and φ∗
i = φ−1 + δi, for i = 1, . . . , n.
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