

FACULTAD DE INGENIERÍA DEPARTAMENTO DE GEOLOGÍA

MODELO GEOMECÁNICO PRELIMINAR DEL MACIZO ROCOSO DE CANTERA NORMAL DE MINA JILGUERO, REGIÓN DE ATACAMA, CHILE

Memoria presentada en conformidad a los requisitos para postular al título profesional de Geólogo.

Profesor guía: Dr. Gonzalo Galaz Escanilla

Profesor co-guía: Sr. Hugo Olmos Naranjo

Renato Mauricio Rivera Zarricueta

Copiapó, Chile 2022

AGRADECIMIENTOS

Soy un fiel creyente que cada persona es un mundo sustentado por diversos pilares. Mis agradecimientos se centran en aquellos pilares que han apoyado mi vida a lo largo de sus distintos procesos.

Por tanto, agradezco a mi familia por los valores enseñados y por el apoyo incondicional entregado. Agradezco a mis amistades, aquellas amistades que son contadas con los dedos de una sola mano, y sobran dedos. Son aquellos hermanos de otra madre que me han acompañado en tristezas, alegrías e incluso, en el silencio. Agradezco al karate, por enseñarme que la vida es un camino entre lo duro y lo suave; la adversidad y la felicidad. Finalmente, y no menos importante, agradezco a mi compañera de vida, quien me ha enseñado a no solo amar, sino también a ser amado como pareja.

Además, seré un eterno agradecido de la experiencia entregada por el equipo de Minera Jilguero y de la Subgerencia de Geología, así como por el apoyo y paciencia a lo largo de mi proceso como practicante y memorista.

Por último, agradezco el apoyo académico de mi profesor guía y co-guía, y por aportar con las cosas más valiosas hoy en día para un futuro profesional: tiempo y conocimiento.

RESUMEN

El presente trabajo surge por la necesidad de optimizar la fragmentación durante el proceso de tronadura. El objetivo es que la faena posea un modelo geomecánico preliminar del macizo rocoso de Cantera Normal de Mina Jilguero, con tal de aportar información respecto al comportamiento geomecánico del mismo. Para ello, se realizó un mapeo geológico escala 1:500, lo que permitió identificar la distribución espacial de las unidades litológicas, así como las trazas de las estructuras principales en la faena, las cuales poseen orientaciones preferenciales de rumbo NW – SE y N – S. Además, se desarrolló un mapeo geotécnico de las discontinuidades a partir de 97 estaciones de mapeo distribuidas en la cantera. Mediante esta información, se exhiben 4 dominios estructurales en Cantera Normal, determinados por sus tipologías de bloques, litologías y distribución de las estructuras principales.

También se valorizó la calidad geotécnica del macizo rocoso, predominando una calidad media en la faena según el RMR de Bieniawski (1989), con un promedio de RMR₈₉ de 53, y según el GSI de Marinos y Hoek (2000), obteniendo un valor promedio de 48. A partir de estas valoraciones de RMR₈₉ obtenidas en terreno, se realizó la zonificación de las calidades geotécnicas del macizo rocoso, distinguiéndose que las zonas con peores valoraciones se asocian principalmente a la presencia de estructuras verticales, evidenciando un control estructural en la calidad geotécnica del macizo rocoso en la faena.

Este estudio es una base para posteriores trabajos en la faena, abarcando desde el diseño de mallas de perforación, optimización del proceso de voladura, análisis de estabilidad de taludes, entre otros.

ABSTRACT

The following work arises from the need to optimize the fragmentation during the blasting process. The aim is that the mine site owns a preliminary geomechanical model on the rock mass of "Cantera Normal de Mina Jilguero", in order to provide information regard the geomechanical behavior about it. In order to achieve that, a geological mapping on scale 1:500 was made, which allowed to identify the space distribution of the lithological units, as well as traces of the main structures of the mine site, which have preferred heading orientations NW- SE and N – S. Besides, a geotechnical mapping was developed of the discontinuities on 97 mapping stations distributed in the pit. Through this information, 4 structural domains are exhibited in "Cantera Normal", determined by their block types, lithologies and distribution of main structures.

The geotechnical quality on the rock mass was also valued, predominating by an average quality in the mine site according to the RMR of Bieniawski (1989), with an average RMR₈₉ of 53, and according to the GSI of Marinos and Hoek (2000) where an average value of 48 is obtained. From these ratings of RMR₈₉ obtained on the ground, the zoning of the geotechnical qualities of the rock mass was carried out, making out that the worst valued areas are associated mainly to the presence of vertical structures, pointing out a structural control in the geotechnical quality of the rock mass in the pit.

This study is the ground for future works in the quarry, starting from the drilling net design, optimization of the blasting process, slope stability analysis, among others.

Índice

I. MARCO	INTRODUCTORIO	1
1.1. Intr	oducción	1
1.2. Áre	a de estudio, ubicación y accesos	2
1.3. Geo	ología Regional	3
1.3.1.	Geología estructural cuenca Chañarcillo	6
1.3.2.	Estratigrafía del Grupo Chañarcillo	9
1.3.2.	1. Formación Abundancia (Valanginiano superior)	9
1.3.2.	2. Formación Nantoco (Hauteriviano)	10
1.3.2.	3. Formación Totoralillo (Barremiano)	10
1.3.2.	4. Formación Pabellón (Barremiano Superior – Aptiano)	11
1.4. Geo	ología Local	12
1.4.1.	Unidad 1 (Caliza Inferior)	12
1.4.2.	Unidad 2 (Volcarenita)	12
1.4.3.	Unidad 3 (Caliza Media)	12
1.4.4.	Unidad 4 (Nivel Ferruginos)	13
1.4.5.	Unidad 5 (Caliza Superior)	13
1.4.6.	Unidad 6 (Lutita Fisible)	13
1.5. Pro	blema de investigación	13
1.6. Hip	ótesis	14
1.7. Obj	etivos	14
1.7.1.	Objetivo general	14
1.7.2.	Objetivos específicos	15
1.8. Est	udios previos	15
2. MARCO	O TEÓRICO	17
2.1. Ger	neralidades Geología Estructural	17
2.1.1.	Fracturas	17
2.1.2.	Diaclasas	18
2.1.3.	Fallas	18
2.2. Cla	sificación de discontinuidades	19

2.3.	Generali	dades Mecánica de Rocas	21
2.3	.1. Pro	piedades de las discontinuidades	21
2	2.3.1.1.	Orientación	22
2	2.3.1.2.	Espaciamiento	23
2	2.3.1.3.	Continuidad o persistencia	24
2	2.3.1.4.	Rugosidad	25
2	2.3.1.5.	Abertura	25
2	2.3.1.6.	Relleno	26
2	2.3.1.7.	Meteorización del macizo rocoso	27
2.3.2	. Clasif	ficaciones Geomecánicas	27
2	2.3.2.1.	Rock Mass Rating (RMR)	28
	2.3.2.1.1	. Resistencia a compresión simple	28
	2.3.2.1.2	2. Rock Quality Designation (RQD)	29
	2.3.2.1.3	3. Espaciado de las juntas	30
	2.3.2.1.4	l. Naturaleza de las juntas	30
	2.3.2.1.5	5. Presencia de agua	30
	2.3.2.1.6	6. Orientación de las discontinuidades	31
2	2.3.2.2.	Geological Strength Index (GSI)	31
2	2.3.2.3.	Correlación entre RMR '89 y GSI	32
2.4.	Dominio	os estructurales	33
2.5.	Generali	dades del proceso de voladura	34
3. ME	ETODOLO	OGÍA DE TRABAJO	37
3.1.	Etapa de	gabinete	37
3.2.	Etapa de	e terreno	37
3.2	.1. Ma	peo geológico	38
3.2	.2. Ma	peo geotécnico de discontinuidades	38
3.3.	Etapa de	gabinete II	39
4. RE	SULTAD	OOS	41
4.1.	Geología	a	42
4.2.	Geología	a Estructural	45

4.2.1.	Estructuras mayores de primer orden	45
4.2.2.	Estructuras mayores de segundo orden	49
4.3. Pro	ppiedades de las discontinuidades	52
4.3.1.	Orientación de las discontinuidades	52
4.3.1.	1. Estructuras mayores	54
4.3	.1.1.1. Trazas de fallas mayores	54
4.3	.1.1.2. Estratificaciones	55
4.3.1.	.2. Estructuras menores	56
4.3	.1.2.1. Trazas de fallas menores	56
4.3	.1.2.2. Diaclasas	56
4.3.2.	Espaciamiento de las discontinuidades	57
4.3.3.	Persistencia de las discontinuidades	57
4.3.4.	Rugosidad de las discontinuidades	58
4.3.5.	Abertura de las discontinuidades	59
4.3.6.	Relleno de las discontinuidades	60
4.3.7.	Meteorización del macizo rocoso	61
4.4. Do	minios estructurales	61
4.4.1.	Dominio estructural A	64
4.4.2.	Dominio estructural B	65
4.4.3.	Dominio estructural C	67
4.4.4.	Dominio estructural D	68
4.5. Pro	ppiedades Macizo Rocoso	70
4.5.1.	Clasificación Macizo Rocoso	70
4.5.2.	Zonificación Macizo Rocoso	73
5. DISCU	SIÓN	78
5.1. Geo	ología estructural	78
5.2. Pro	ppiedades de las discontinuidades	80
5.3. Do	minios estructurales	82
5.4. Pro	ppiedades Macizo Rocoso	86
5.4.1.	Clasificación Macizo Rocoso	86

	5.4	.2. Zonificación Macizo Rocoso	88
6.	CO	NCLUSIONES Y RECOMENDACIONES	89
7.	BIE	BLIOGRAFÍA	91
8.	AN	IEXOS	97
8	3.1.	Anexo A: Características de las discontinuidades	97
8	3.2.	Anexo B: Clasificación del macizo rocoso	99
8	3.3.	Anexo C: Parámetros geotécnicos por unidad geológica	103
8	3.4.	Anexo D: Mapa Cantera Normal escala 1:500	115
8	3.5.	Anexo F: Datos estructurales de Cantera Normal	116

LISTA DE FIGURAS

Figura 1.1. Ubicación geográfica del área de estudio (polígono en rojo), en referencia a
la ciudad de Copiapó (polígono negro).
Figura 1.2. Accesos a la faena minera de Mina Jilguero (Google Earth, 2022)
Figura 1.4. Mapa geológico del área de estudio ubicado con el polígono en rojo (modificado de Arévalo, 2005)
Figura 1.5. Representaciones esquemáticas de: (a) el centro dispersor de Karoo, que fragmenta Gondwana a comienzos del Jurásico y (b) el centro dispersor de Paraná, que separa América del Sur de África a fines del Jurásico e inicio del Cretácico (extraído de Mpodozis y Ramos, 2008).
Figura 1.6. Perfil en el que se observa la generación de <i>back thrusts</i> con dirección hacia el norte, la cual es contraria a la dirección del transporte tectónico y a la dirección principal de los corrimientos, siendo estas últimas hacia el sur (extraído de Fossen, 2010).
Figura 1.7. Despegue Cerrillos con dirección de vergencia hacia el W, observado desde la Quebrada Carrizalillo mirando hacia el Norte (extraído de Arévalo et al., 2006)7
Figura 1.8. Modelos tectónicos de la cuenca de Chañarcillo propuestos por: (i) Arévalo (2005); (ii) Arévalo y Welkner (2008); (iii) Amilibia (2009), y por último; (iv) Martínez et al. (2013) (modificado de Ochoa, 2015).
Figura 1.9. Modelo tectónico hipotético para la cuenca Chañarcillo, resumiendo la evolución de la cuenca (extraído de Martínez et al., 2013)9
Figura 1.10. Columna estratigráfica sintética del Grupo Chañarcillo, en que se presentan sus formaciones y ambiente tectónico asociado (extraído de Martínez et al., 2013)11
Figura 2.1. Clasificación de fracturas. La flecha de mayor tamaño refleja la dirección y sentido de propagación de la fractura, mientras que las flechas de menor tamaño indican el sentido de movimiento relativo de los bloques (extraído de Niemeyer, 1999)
Figura 2.2. Terminologías que definen la orientación de superficies de discontinuidades (extraído de Wyllie y Mah, 2004)
Figura 2.3. Datos de orientación representados en un diagrama de rosetas (extraído de González de Vallejo et al., 2004)

Sigura 2.4. Se visualiza la diferencia entre el espaciamiento de discontinuidades representado por la letra <i>S</i>), y el espaciamiento aparente (<i>Sapp</i>); además de la relacióntre ambos parámetros (extraído de Wyllie y Mah, 2004)			
igura 2.5. Ilustración que refleja distintas continuidades de varias familias de iscontinuidades, desde un modelo más persistente (a), a otros menos continuos (d) modificado de González de Vallejo et al., 2004)			
Figura 2.6. Representación esquemática de una discontinuidad cerrada (A) y una discontinuidad abierta (B), indicando su abertura (modificado de Brady y Brown, 2004).			
Figura 2.7. Esquemas ilustrativos de tipos de rellenos en discontinuidades (extraído de Ramírez y Alejano, 2004)26			
Figura 2.8. <i>Geological Strength Index</i> (GSI) para el macizo rocoso fracturado (extraído de Marinos y Hoek, 2000)32			
Figura 2.9. Ejemplo esquemático de los tipos de bloques generalmente observados en los macizos rocosos (extraído de Zhang, 2016)			
Figura 2.10. Se presentan dos diseños de mallas de tronadura. La figura (a) refleja un diseño adecuado entre la relación de la distancia de pozos y el tamaño de los bloques; mientras que la figura (b) presenta un diseño inadecuado, ubicando los pozos de tronadura en los límites de las discontinuidades (extraído de Moraga, 2018)35			
Figura 2.11. Ilustración que refleja un macizo rocoso dañado por efectos de las tronaduras (extraído de Ramírez y Alejano, 2004)35			
Figura 3.1. Equipo topográfico GPS Stonex S9III Plus instalado en Cantera Normal38			
Figura 3.2. Levantamiento de puntos topográficos de las estaciones de mapeo en terreno mediante GPS Stonex S9III Plus			
Figura 4.1. Vista de perfil hacia el WSW de Cantera Normal. Los puntos de color negro reflejan la distribución de las estaciones de mapeo y puntos de control definidos. La topografía está definida por las líneas azules (bordes de bancos), rojas (patas de banco), y verdes (caminos)			
Figura 4.2. Mapa geológico-estructural escala 1:500 de Cantera Normal			
Figura 4.3. Dique de guijarro ubicado en el nivel 1070 m.s.n.m. de orientación WNW, en donde las líneas rojas demarcan la delimitación del cuerpo tabular44			
Figura 4.4. Acercamiento de dique de guijarro ubicado en el nivel 1115 m.s.n.m. mostrando fragmentos subredondeados a subangulosos de caliza y microdiorita, inmersos en una matriz fina de óxidos e hidróxidos de hierro			

Figura 4.5. Representación de la distribución de las estructuras mayores de primer orden reconocidas en Cantera Normal, además de su nomenclatura (desde las letras A a la F)
Figura 4.6. Vista hacia el norte del sector denominado Paredón desde el nivel 1160 m.s.n.m
Figura 4.7. Plano de la estructura mayor de primer orden C en banco del nivel 1150 m.s.n.m., en donde la elipse de color rojo señala la zona de rellenos blandos48
Figura 4.8. Se representan las trazas de las estructuras mayores de segundo orden reconocidas en Cantera Normal, además de la nomenclatura seleccionada50
Figura 4.9. Vista hacia el E, desde el banco 1160 m.s.n.m., de la estructura mayor de segundo orden U, encerrada en elipse de color rojo
Figura 4.10. Estereograma con los polos de las discontinuidades medidas en Cantera Normal. Se representan los polos de las estratificaciones, diaclasas, estructuras menores de cuarto orden; y estructuras mayores de tercer, segundo y primer orden
Figura 4.11. Proyección estereográfica con los polos y planos principales de estratificaciones, diaclasas, fallas menores, estructuras mayores de tercer orden, estructuras mayores de segundo orden y estructuras mayores de primer orden, con las etiquetas de 0, 1, 2, 3, 4, y 5 respectivamente
Figura 4.12. Diagrama de roseta simple de las 324 discontinuidades reconocidas en Cantera Normal
Figura 4.13. Proyección estereográfica (a) y diagramas de roseta (b) de las 21 fallas mayores reconocidas en Cantera Normal
Figura 4.14. Proyección estereográfica con concentración de polos de estratificaciones de Cantera Normal (A), y diagrama de rosetas simple visualizando la orientación preferencial del rumbo NNE – SSW (B)
Figura 4.15. Diagramas de concentración de polos (A) y de roseta (B) de trazas de fallas menores identificadas en la faena
Figura 4.16. Proyección estereográfica de las discontinuidades de diaclasas medidas a lo largo de Cantera Normal
Figura 4.17. Continuidad de las estratificaciones medidas en Cantera Normal58
Figura 4.18. Rugosidad de las discontinuidades medidas en Cantera Normal, según el coeficiente de rugosidad (JRC)
Figura 4.19. Gráfico de columnas de la apertura (mm) de las discontinuidades medidas en Cantera Normal60

Figura 4.20. Gráfico de columnas con los tipos de rellenos observados en las discontinuidades presentes en Cantera Normal
Figura 4.21. Mapa de Cantera Normal con los polígonos de los dominios estructurales propuestos
Figura 4.22. Diagramas de rosetas del dominio estructural A
Figura 4.23. Diagramas de rosetas del dominio estructural B
Figura 4.24. Diagramas de rosetas del dominio estructural C
Figura 4.25. Diagramas de rosetas del dominio estructural D
Figura 4.26. Valoración de RMR ₈₉ obtenida mediante las 97 estaciones de mapeo distribuidas en Cantera Normal
Figura 4.27. Estación C69 ubicada en el banco 1135 m.s.n.m. con macizo rocoso afectado por dique de guijarro, destacándose su mala calidad geotécnica
Figura 4.28. Mapa con vista en planta de Cantera Normal, con las zonificaciones de la valoración de RMR ₈₉ en superficie
Figura 4.29. Estación C85 en que se observa una buena calidad geotécnica del macizo rocoso
Figura 4.30. Estación C88 en que se observa una mala calidad geotécnica del macizo rocoso
Figura 4.31. Estación C10 en que se observa una calidad geotécnica media del macizo rocoso
Figura 5.1. Plano con estrías (líneas de color rojo), perpendiculares al rumbo NNW – SSE de la estratificación con dato estructural de la estría equivalente a 196/89L78
Figura 5.2. Plano de estratificación fisible de la unidad Caliza Superior deslizado en el nivel 1105 m.s.n.m
Figura 5.3. Diagrama de proyección estereográfica, en donde se presentan los planos principales de las estructuras mayores de primer y segundo orden80
Figura 5.4. Se refleja la relación espacial entre los sectores con estratificaciones de bajas persistencias (puntos de color negro), con respecto a las trazas de estructuras principales y sectores de mala calidad geotécnica del macizo rocoso
Figura 5.5. Diagramas de roseta simple de estructuras mayores y menores de los dominios estructurales A, B, C y D
Figura 5.6. Diagramas de proyección estereográfica con los planos principales distinguidos a partir de la concentración de polos de estructuras mayores y menores, de los dominios estructurales A, B, C y D

Figura 8.1. Perfiles normalizados para obtener el indice de rugosidad o JRC mediante comparadores visuales, con su escala en cm (Barton y Choubey, 1977)97		
Figura 8.2. Planilla utilizada para la recolección de información en el mapeo geotécnico de discontinuidades		
Figura 8.3. Mapa estructural preliminar Cantera Normal escala 1:500115		
Tabla 8.20. Base de datos estructurales recolectados en Cantera Normal. Las notaciones se refieren a planos de estratificaciones (0), sets de diaclasas (1), trazas de fallas menores (2), trazas de fallas mayores de 3er		
LISTA DE TABLAS		
Tabla 2.1. Clasificación de discontinuidades. 20		
Tabla 2.2. Estimación de la resistencia a compresión simple de las rocas en campo (extraído de Ramírez y Alejano, 2004)		
Tabla 4.1. Cálculo de RMR89 por unidad geológica. 72		
Tabla 4.2. Valores máximos, mínimos, y promedios de GSI por unidad geológica obtenidos en Cantera Normal		
Tabla 5.1. Valoraciones modificadas de RMR89 máximo, mínimo y promedio por unidad geológica. 87		
Tabla 5.2. Valoraciones modificadas de GSI máximo, mínimo y promedio por unidad geológica		
Tabla 6.1. Tabla resumen con las características generales de cada dominio estructural definido en Cantera Normal de Mina Jilguero		
Tabla 8.1. Evaluación del grado de meteorización del macizo rocoso (ISRM, 1981)98		
Tabla 8.2. Orientaciones preferenciales de las estructuras mayores identificadas en faena, obtenidas a partir del <i>software</i> Dips 7.0		
Tabla 8.3. Valoración del parámetro de espaciado entre discontinuidades en RMR ₈₉ (Bieniawski, 1989)		
Tabla 8.4. Valoración del parámetro de persistencia o continuidad de las discontinuidades en RMR ₈₉ (Bieniawski, 1989)		
Tabla 8.5. Valoración del parámetro de rugosidad en RMR ₈₉ (Bieniawski, 1989)99		
Tabla 8.6. Valoración del parámetro de resistencia a la compresión simple en RMR ₈₉ (Bieniawski, 1989)100		

Tabla 8.7. Valoración del parámetro de apertura o abertura en RMR ₈₉ (Bieniawski,
1989)
Tabla 8.8. Valoración del parámetro de relleno en RMR ₈₉ (Bieniawski, 1989)100
Tabla 8.9. Valoración del parámetro de alteración en RMR ₈₉ (Bieniawski, 1989)100
Tabla 8.10. Valoración del parámetro de RQD (<i>Rock Quality Designation</i>) en RMR ₈₉ (Bieniawski, 1989)
Tabla 8.11. Estimación de las resistencias de rocas (Bieniawski, 1973). 101
Tabla 8.12. Calidad del macizo rocoso en base al cálculo del RQD (extraído deGonzález de Vallejo et al., 2004).102
Tabla 8.13. Calidad de macizos rocosos en relación al índice RMR (extraído de González de Vallejo et al., 2004)
Tabla 8.14. Gráficos de torta del espaciado en metros de las discontinuidades, según cada unidad geológica mapeada
Tabla 8.15. Gráficos de torta de la persistencia en metros de las discontinuidades, según cada unidad geológica mapeada
Tabla 8.16. Gráficos de torta de la rugosidad de las discontinuidades, según cada unidad geológica. 108
Tabla 8.17. Gráficos de torta de la apertura de las discontinuidades, según cada unidad geológica. 110
Tabla 8.18. Gráficos de torta del tipo de relleno de las discontinuidades, según cada unidad geológica. 112
Tabla 8.19. Gráficos de torta del grado de meteorización del macizo rocoso, según cada unidad geológica. 114
Tabla 8.20. Base de datos estructurales recolectados en Cantera Normal. Las notaciones se refieren a planos de estratificaciones (0), sets de diaclasas (1), trazas de fallas menores (2), trazas de fallas mayores de 3er orden (3) y trazas de estructuras de 1er y 2do orden (4).

CAPÍTULO I

I. MARCO INTRODUCTORIO

1.1. Introducción

La Minera Jilguero S.A. explota el yacimiento sedimentario Jilguero, el que está compuesto principalmente por calizas marinas de alta ley en carbonato cálcico (> 90%). El yacimiento es explotado mediante un diseño a cielo abierto, con bancos de 5 o 10 metros, con tal de efectuar una óptima selección del material. En el proceso de tronadura, los diámetros de las fragmentaciones obtenidas son variables, evidenciando incluso, colpas de escala métrica (en sus ejes mayores), afectando el proceso de chancado, y por ende, el proceso de producción. Para lograr controlar las fragmentaciones de roca producidas en el proceso de tronadura, se debe tener un conocimiento geomecánico óptimo del macizo rocoso del yacimiento, por lo que se requiere determinar el comportamiento geomecánico del macizo rocoso presente en la labor minera, acotando el estudio a Cantera Normal, ubicada en el sector suroccidental del yacimiento. Esto se realiza a través de un mapeo geológico-estructural de superficie a escala 1:500, para luego desarrollar un mapeo geotécnico escala 1:100, a través de estaciones de mapeo ubicadas cada 25 metros, y distribuidas a lo largo de cada banco. La información obtenida permite definir dominios estructurales en Cantera Normal, además de las calidades geotécnicas de cada unidad geológica, para finalmente, diseñar la zonificación de las calidades geotécnicas del macizo rocoso.

La presente investigación, permite disponer de la información preliminar necesaria para desarrollar un correcto diseño de las mallas de tronadura, con tal de obtener una adecuada fragmentación en dicho proceso; y consecuentemente, una producción eficiente en la labor minera, para abastecer los requerimientos industriales de la Planta INACAL en el proceso de producción de cal.

1.2. Área de estudio, ubicación y accesos

El área de estudio corresponde a Mina Jilguero, la cual se ubica a aproximadamente 15 kilómetros hacia el SE de la ciudad de Copiapó (figura 1.1).

Figura 1.1. Ubicación geográfica del área de estudio (polígono en rojo), en referencia a la ciudad de Copiapó (polígono negro).

La faena minera posee un área de 650 m² aproximadamente, a la que se accede desde la localidad de Paipote por la ruta 31-CH hasta el kilómetro 16 de dicha ruta, inmediatamente después de la planta INACAL Copiapó. Posteriormente se debe desviar por la ruta C-377 durante 21 kilómetros para acceder a la faena, lo que se puede visualizar en la figura 1.2.

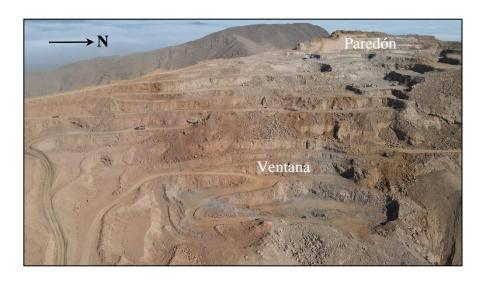



Figura 1.2. Accesos a la faena minera de Mina Jilguero (Google Earth, 2022).

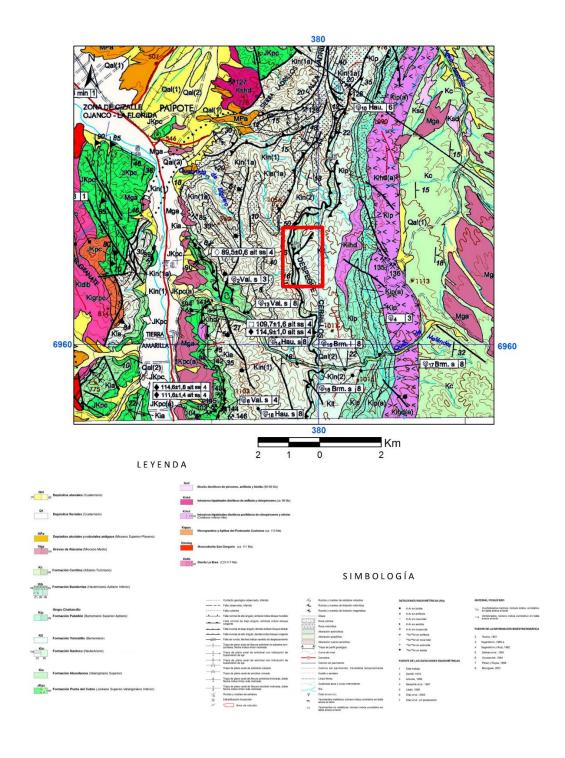
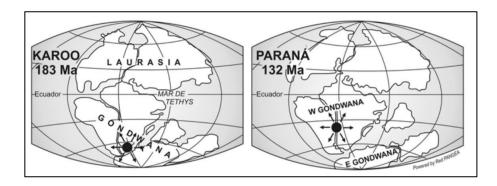

En Cantera Normal, se presentan bancos desde el nivel 1070 m.s.n.m. ubicado en el sector Ventana; mientras que la cota máxima corresponde al nivel 1190 m.s.n.m. situado en el sector Paredón de Cantera Normal (figura 1.3).

Figura 1.3. Cantera Normal de Mina Jilguero. Se visualizan los sectores Ventana y Paredón, donde este último posee las mayores alturas de la faena.

1.3. Geología Regional

El marco geológico del área de estudio se analiza con la carta Copiapó (Arévalo, 2005; figura 1.4), identificando que el Grupo Chañarcillo representa la litología predominante del sector, específicamente las formaciones Nantoco y Totoralillo; y estructuralmente, el despegue Cerrillos corresponde a la estructura principal a nivel regional.

Figura 1.4. Mapa geológico del área de estudio ubicado con el polígono en rojo (modificado de Arévalo, 2005).

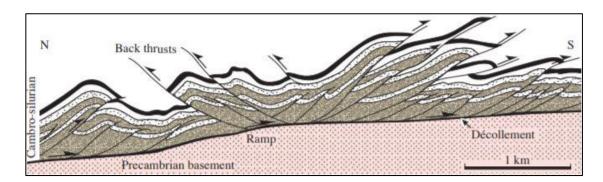

El margen continental de la Región de Atacama entre los 27 y 30°S está localizado en el segmento denominado "flat–slab", donde la placa de Nazca se subducta casi horizontalmente bajo el margen occidental de América del Sur (Jordan et al., 1983; Cahill y Isacks, 1992).

En esta región es posible diferenciar el dominio de la Cordillera de la Costa, el cual posee como principal unidad tectónica el Sistema de Fallas de Atacama (SFA), la que posee un rumbo aproximado Norte – Sur en sus trazas (Charrier et al., 2007), donde además, intrusivos del Jurásico Superior – Cretácico Inferior se emplazaron al oeste de la traza principal de este sistema, intruyendo unidades metamórficas paleozoicas (Complejo Epimetamórfico Chañaral; Godoy et al., 2003), sedimentarias triásicas – jurásicas inferiores (Estratos de Quebrada Poblete) y volcánicas jurásicas (Formación La Negra).

La Precordillera, está formada mayoritariamente por unidades estratificadas. En el Jurásico, se depositan rocas volcánicas y volcanoclásticas de ambiente continental representadas por la Formación La Negra, donde hacia el este se depositan unidades de litología y edad similar, incluyendo facies transicionales, tal como la Formación Sierra de Fraga (Sepúlveda y Naranjo, 1982) a marinas, como la Formación Lautaro (Segerstrom, 1959), que representan los depósitos de la cuenca de trasarco (Arévalo, 2005). El arco magmático Jurásico Inferior – Cretácico Inferior está representado por las lavas dacíticas a calco – alcalinas de las formaciones La Negra y Punta del Cobre (Taylor et al., 2007). Esta última unidad, subyace discordante a 4 km aproximadamente de depósitos calcáreos y siliciclásticos correspondientes al Grupo Chañarcillo de edad Valanginiano – Aptiano (Segerstrom y Parker, 1959; Segerstrom, 1960; Segerstrom y Ruiz, 1962).

El Grupo Chañarcillo representa el relleno sedimentario de una cuenca abierta hacia el sur denominada cuenca de Chañarcillo (Mourgues et al., 2009). La formación de esta cuenca se relaciona con la fragmentación del continente Gondwana debido al centro dispersor, asociado a la pluma de Karoo (Cox, 1988; figura 1.5). Este evento inició la subducción de la placa oceánica de Fénix bajo el margen occidental de Sudamérica, lo cual permitió el desarrollo de una extensión generalizada, manifestada a través del establecimiento de un arco magmático, además de diversos sistemas estructurales extensionales de intra y trasarco (Ochoa, 2015). Luego apareció otro centro de expansión llamado Paraná (figura

1.5), el cual produjo la separación de la parte sur de Sudamérica y África (Renne et al., 1992). Durante este tiempo se desarrolló casi totalmente una tectónica extensional de trasarco a lo largo del norte Chile, cuya subsidencia permitió la expansión de plataformas marinas carbonáticas.


Figura 1.5. Representaciones esquemáticas de: (a) el centro dispersor de Karoo, que fragmenta Gondwana a comienzos del Jurásico y (b) el centro dispersor de Paraná, que separa América del Sur de África a fines del Jurásico e inicio del Cretácico (extraído de Mpodozis y Ramos, 2008).

Al terminar el Cretácico Inferior con la apertura del océano Atlántico y la subsecuente separación de Sudamérica y África, se da comienzo a la deformación compresiva y la inversión de cuencas en el Sur de los Andes Centrales. Particularmente, este tiempo marcó el comienzo de la deformación en la cuenca de Chañarcillo (Ochoa, 2015).

1.3.1. Geología estructural cuenca Chañarcillo

La cuenca de Chañarcillo presenta dos estructuras principales, el Anticlinorio de Tierra Amarilla (Segerstrom, 1968) y la Falla Elisa de Bordos. La primera corresponde a una estructura anticlinal de rumbo NNE y de vergencia este, afectando principalmente a los depósitos volcánicos sin-rift de la Fm. Punta del Cobre, así como a las sucesiones sedimentarias marinas del Grupo Chañarcillo, y a los depósitos volcanoclásticos post-rift de la Fm. Cerrillos. Formando parte de este sistema, se encuentra el despegue Cerrillos, el cual se habría formado como un retrocorrimiento (*back thrust*; figura 1.6) intraestratal de dimensión regional, explotando horizontes poco competentes, dejando la sección superior del Grupo Chañarcillo (formaciones Totoralillo y Pabellón) desplazada sobre su sección inferior (formaciones Abundancia y Nantoco; figura 1.7). El despegue Cerrillos posee una traza sinuosa de 65 km aproximadamente, de dirección general NNE, el cual

coincide con la base de un nivel de brechas calcáreas yesíferas y calizas macizas en pliegues decamétricos de tipo chevron (Arévalo y Mpodozis, 1991). Por otro lado, la Falla Elisa de Bordos marca el límite oriental para las secuencias calcáreas del Grupo Chañarcillo (figura 1.9).

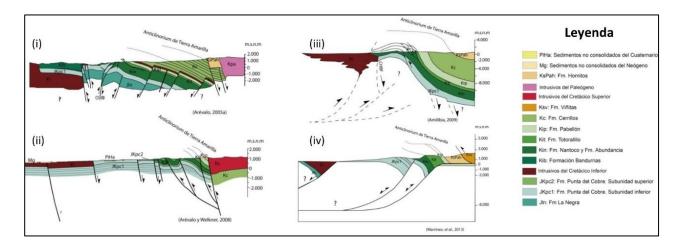
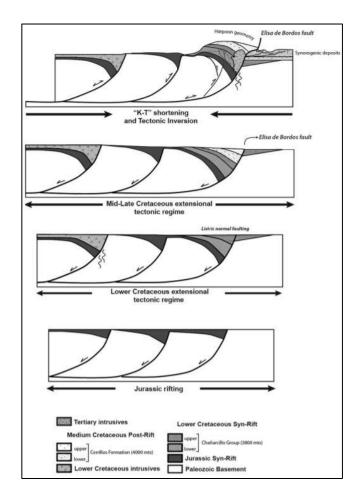

Figura 1.6. Perfil en el que se observa la generación de *back thrusts* con dirección hacia el norte, la cual es contraria a la dirección del transporte tectónico y a la dirección principal de los corrimientos, siendo estas últimas hacia el sur (extraído de Fossen, 2010).

Figura 1.7. Despegue Cerrillos con dirección de vergencia hacia el W, observado desde la Quebrada Carrizalillo mirando hacia el Norte (extraído de Arévalo et al., 2006).


La configuración de las estructuras en la cuenca ha resultado problemática, y a través de las condiciones de borde entregadas por la geología de superficie se han desarrollado 4 modelos estructurales (figura 1.8): (i) Arévalo (2005), propone un sistema de flor positiva; (ii) Arévalo y Welkner (2008), señalan que la deformación en la cuenca es provocada por un sistema de fallas inversas con vergencia hacia el oeste, y además interpretan el límite

principal de la cuenca como una falla normal que se inclina progresivamente hacia el este; (iii) Amilibia (2008), afirma que la deformación se debe a fallas inversas que afectaron el borde occidental de la cuenca y que levantaron, transportaron y plegaron las secuencias calcáreas, y finalmente; (iv) Martínez et al. (2013), proponen una estructura de hemigraben invertido. A pesar de que se reproduce la deformación de superficie, cada modelo representa distintas interpretaciones estructurales del subsuelo.

Figura 1.8. Modelos tectónicos de la cuenca de Chañarcillo propuestos por: (i) Arévalo (2005); (ii) Arévalo y Welkner (2008); (iii) Amilibia (2009), y por último; (iv) Martínez et al. (2013) (modificado de Ochoa, 2015).

Según el estudio más reciente, la evolución tectónica de la cuenca Chañarcillo estaba controlada estructuralmente a través de zonas de debilidad extensivas durante el Mesozoico temprano. Subsecuentemente, la Formación Punta del Cobre, Grupo Chañarcillo y la Formación Cerrillos se acomodaron con la geometría estilo dominó, activa durante el Jurásico y Cretácico tardío (Martínez et al., 2013). El acortamiento (entre 9 y 14 km) y la inversión tectónica de las estructuras extensionales previas causó la exhumación y crecimiento del enorme Anticlinorio de Tierra amarilla con vergencia este, muy probablemente durante la fase compresiva "K-T" (Figura 1.9).

Figura 1.9. Modelo tectónico hipotético para la cuenca Chañarcillo, resumiendo la evolución de la cuenca (extraído de Martínez et al., 2013).

1.3.2. Estratigrafía del Grupo Chañarcillo

El relleno sedimentario de la cuenca de Chañarcillo es subdividido en 4 formaciones, desde base a techo, corresponden a las formaciones Abundancia, Nantoco, Totoralillo y Pabellón (Segerstrom y Parker, 1959; figura 1.10).

1.3.2.1. Formación Abundancia (Valanginiano superior)

La Formación Abundancia fue primeramente identificada como una serie de lutitas cercanas a la mina Abundancia (Hofstetter et al., 1957). Sin embargo, la mejor exposición de esta formación se presenta en quebrada Meléndez, la cual corresponde a una serie calcáreo – arenosa, de *mudstones* grises y arcosas (Martínez et al., 2013) de alrededor de 200 metros de potencia, que posee un contacto concordante hacia techo con la Formación Nantoco, y un contacto basal con la Formación Punta del Cobre que no está definido

claramente; ya que se oculta la relación estratigráfica con una falla plana intraestratal, mientras que cercano a la desembocadura del río Copiapó se exhibe un contacto concordante (Arévalo, 2005). Según la fauna marina encontrada en la unidad, se le asigna una edad de Valanginiano superior (Corvalán, 1973; Segerstrom y Ruiz, 1962).

1.3.2.2. Formación Nantoco (Hauteriviano)

Esta formación corresponde a una secuencia monótona de calizas grises con potencias variables, entre los 600 y 1200 metros, que es suprayacente a la Formación Abundancia de forma concordante, y subyace de la misma manera, a las rocas de la Formación Totoralillo (Arévalo, 2005). Según Segerstrom y Parker (1959) la formación posee dos miembros. El Miembro Inferior está formado por 600 a 1000 metros de calcilutitas y calcilutitas limosas (mudstones) con estratos muy continuos lateralmente de 10 a 80 cm de espesor, que culminan con un nivel persistente de calcarenitas bio e intraclásticas (grainstones). Facies de areniscas rojas y conglomerados bien estratificados engranan con el Miembro Inferior desde quebrada Meléndez hacia el norte, lo que provoca, que a la altura de quebrada Cinchado, la subunidad es representada casi en su totalidad por facies clásticas. El Miembro Superior es lateralmente muy continuo, y se compone de calcilutitas negras laminadas y calcarenitas amarillentas con una potencia de 200 metros aproximadamente, las cuales se adelgazan hasta desaparecer en la sierra Ladrillo. Las rocas de esta unidad se encuentran típicamente plegadas y brechizadas, formando un solo nivel deformado. La Formación Nantoco es interpretada como depósitos supratidales acumulados durante el Hauteriviano (Martínez et al., 2013).


1.3.2.3. Formación Totoralillo (Barremiano)

Es representada por una secuencia de calcilutitas grises claras a amarillentas con espesores variables de 170 a 250 metros, hasta convertirse en solo 75 metros de calizas margosas amarillentas a la altura de quebrada Cinchado. Sobreyace concordantemente a las rocas de la Formación Nantoco, y está cubierta de la misma forma por los estratos de la Formación Pabellón. Litológicamente, se presentan calcilutitas con laminación plana milimétrica hacia base, que gradan a calcilutitas arenosas con intercalaciones de calcilutitas bioclásticas (*wackestones*), en capas de 20 a 40 cm de espesor hacia el techo (Arévalo, 2005). Según Martínez et al. (2013), la formación posee una edad Barremiana

tardía debido a la presencia de Crioceratites (Paracrioceras) y Shasticrioceras en las rocas suprayacentes del techo de la Formación Nantoco.

1.3.2.4. Formación Pabellón (Barremiano Superior – Aptiano)

La Formación Pabellón exhibe una secuencia calcárea arenosa de 450 a 700 metros de potencia que cubren concordantemente a los estratos de la Formación Totoralillo, y subyace concordantemente las rocas de la Formación Cerrillos. Sin embargo, clastos de rocas volcánicas pertenecientes a la Formación Pabellón, se observan en la base de la Formación Cerrillos, indicando un contacto erosivo entre las dos formaciones (Arévalo, 2005). La formación es representada por una sucesión mixta sedimentaria y volcánica (Martínez et al., 2013), que en su base exhibe calcilutitas (*wackestones* y *mudstones*) bien estratificadas; hacia arriba se intercalan calcarenitas (*grainstones*) y calciruditas muy bioclásticas hasta ser dominantes hacia techo. En Sierra Checo de Cobre, las calizas se intercalan con areniscas y conglomerados volcánicos. En las secciones septentrionales de la formación, dominan las facies clásticas, culminando a la altura de quebrada Paipote, como un paquete clástico de areniscas rojas (Arévalo, 2005).

Figura 1.10. Columna estratigráfica sintética del Grupo Chañarcillo, en que se presentan sus formaciones y ambiente tectónico asociado (extraído de Martínez et al., 2013).

1.4. Geología Local

1.4.1. Unidad 1 (Caliza Inferior)

Corresponde a la unidad basal de los cuerpos de interés con espesor variable de 9 a 25 metros. Presenta un color gris claro, con textura sacaroidea fina y contenidos de feldespatos cálcicos elevados hacia los límites basales y superiores del cuerpo. Mediante análisis de FRX (Bruker S1 Titan), se determinaron valores de hasta 8% de óxido de silicio en los límites de esta unidad. Según Tapia (2017), la roca se constituye de componentes no esqueléticos granosoportados, presentando ooides concéntricos y pelitas, cementados por esparita. La roca es clasificada como un *grainstone* según la clasificación de Dunham (1962). Además, la unidad es subdividida por un estrato sedimentario calcáreo grisáceo con altos contenidos de sílice (valores desde 10% de óxido de silicio mediante Bruker S1 Titan), que posee una potencia de hasta 15 metros.

1.4.2. Unidad 2 (Volcarenita)

Unidad verdosa a gris verdosa volcanoclástica con potencia de 6 a 28 metros. Se observan en la unidad clastos de fragmentos líticos tamaño arena fina a media, y plagioclasas subredondeadas a angulosas, con tamaño menor a 2 mm, además de minerales opacos y matriz carbonática. La unidad presenta un contenido de carbonato variable, el cual fluctúa entre los 50 y 80%, y hasta un 25% de óxido de silicio. Además, Tapia (2017), indica que la unidad presenta una silicificación asociada a los fragmentos líticos, y abundante material vítreo diseminado en la matriz.

1.4.3. Unidad 3 (Caliza Media)

Unidad calcárea de color gris claro a medio y con estratos agrupados en estructura de bloques, con un espesor total de la unidad de 2 a 8 metros. Es casi ausente de impurezas, a pesar de presentar pátinas de óxidos de Fe. Sin embargo, hacia la base de la unidad, esta se enriquece en cristales de plagioclasa (hasta un ~8%); y en su sección más septentrional, esta se enriquece en carbonato de magnesio, conformando dolomías. Tapia (2017), distingue la presencia de ooides y peloides en la unidad, cementados por esparita y cenizas de plagioclasa diseminada de 1 a 2 mm, subangulosas a subredondeadas. Además, en secciones basales de la unidad, el autor identifica la presencia de foraminíferos, parcialmente pelitizados, y briozoos.

1.4.4. Unidad 4 (Nivel Ferruginos)

Unidad brechiforme con potencia variable desde 2 hasta 18 metros. Se constituye de abundantes limonitas (predominio de hematita y contenido variable de goetita y jarosita), arcillas, esfalerita, *boxwork* de piritas y calcita recristalizada.

1.4.5. Unidad 5 (Caliza Superior)

Unidad sedimentaria química con espesores desde los 3 a 28 metros, de color gris claro a oscuro con planos paralelos de finamente laminados a blocosos, con una fisibilidad característica. Presenta textura sacaroidea de tamaño grueso, y esporádicas vetillas y pátinas de yeso principalmente cercanas al techo de la unidad. Rocas de la unidad son clasificadas como *sparstone* según la clasificación de Wright (1992), debido a la textura obliterada de las mismas (Tapia, 2017). La unidad es subdividida por un nivel lenticular de caliza bituminosa de menor calidad en carbonato, y por ende, considerado estéril.

1.4.6. Unidad 6 (Lutita Fisible)

Unidad sedimentaria que presenta un espesor máximo de 60 metros (Tapia, 2017). Se caracteriza la unidad por presentar rocas de color negruzco a pardo verdoso, con tamaño de grano entre limo a arcilla, y matriz carbonatada. Presenta contenidos variables de materia orgánica, y se dispone típicamente en estratos fisibles con espesores de entre 60 y 6 cm. Comúnmente presenta asociadas vetas, vetillas y pátinas de yeso, teniendo, por ende, sulfato como impureza principal en la unidad.

1.5. Problema de investigación

En todo desarrollo minero es de vital importancia la interacción entre la planeación, geomecánica y producción. En Mina Jilguero, se realiza una explotación a cielo abierto de rocas carbonatadas de alta ley pertenecientes al Miembro Superior de la Formación Nantoco (Segerstrom y Parker, 1959), con bancos de 5 o 10 metros, con tal de optimizar la selección de la extracción. Estructuralmente, en la zona de estudio se presentan estructuras de rumbo N – S asociadas a la fase compresiva "K-T" (Martínez et al., 2013), y estructuras de rumbo NW – SE con predominio en la componente transcurrente; caracterizando la configuración estructural de la faena.

La roca de interés, posee una ley de corte de 91% de carbonato, clasificando 3 tipos de calidades según las concentraciones de carbonato; (i) entre 91 y 94% se tiene *caliza normal*, (ii) entre 94 y 95,5% *caliza de alta ley*, y (iii) superior a los 95,5% de carbonato y que además, la roca posea menos del 2% de óxido de silicio, se obtiene *caliza baja sílice* o *BS*. Posteriormente, el material tronado es chancado para obtener 3 granulometrías, menor a 6 mm, entre 6 y 19 mm, y entre 20 y 50 mm. El material que se obtiene del proceso de tronadura debe tener una granulometría óptima, que permita optimizar el proceso de chancado; sin embargo, las granulometrías que se obtienen como resultado son generalmente excesivas (colpas). Esto se debe a que el proceso de tronadura se realiza sin un óptimo conocimiento del comportamiento geomecánico del macizo rocoso, lo que provoca resultados poco predecibles respecto a la granulometría obtenida de la tronadura, afectando directamente el correcto desempeño de las actividades de producción.

Es por esto, que se requiere definir el comportamiento geomecánico del macizo rocoso, para planificar diseños de malla de tronadura correctos según los parámetros geotécnicos y la distribución de las distintas estructuras en la faena minera, con tal de obtener una adecuada fragmentación y optimizar así, el desarrollo de la explotación de calizas.

1.6. Hipótesis

En la faena minera se distinguen 6 unidades geológicas, y dentro de ellas, 3 unidades son de interés económico; denominadas Caliza Inferior, Caliza Media y Caliza Superior, según su distribución estratigráfica y sus correspondientes diferencias litológicas. Producto de estas mismas diferenciaciones, se propone que cada unidad geológica posee un comportamiento geomecánico característico, que a su vez, presente variaciones debido al control estructural de la zona.

1.7. Objetivos

1.7.1. Objetivo general

Proponer un modelo geomecánico preliminar del macizo rocoso de Cantera Normal de Mina Jilguero.

1.7.2. Objetivos específicos

- Definir la distribución espacial y caracterizar las distintas unidades geológicoestructurales presentes en Cantera Normal.
- Determinar el comportamiento geomecánico de las unidades de roca presentes en Cantera Normal.
- Diseñar la zonificación de las calidades geotécnicas del macizo rocoso.

1.8. Estudios previos

Gajardo (1976) centró su trabajo en los depósitos de carbonatos de calcio en la región de Atacama, realizando una evaluación regional de la distribución y estratigrafía de los mantos calcáreos, a través de la identificación de áreas de potencial interés para futuros estudios de reservas de caliza de alta ley, con tal de obtener áreas favorables (de primera y segunda importancia) y áreas sin expectativas.

Garay (1994) realizó una evaluación geológica del Prospecto Jilguero Norte Inferior a través de un mapeo geológico superficial y una campaña de 300 metros de sondajes de diamantina, para determinar el potencial de las calizas presentes.

Arévalo (2005) llevó a cabo su estudio en la zona centro – oeste de la región de Atacama, reportando su trabajo en la Carta Copiapó, escala 1:100.000. Analizó las distribuciones espaciales y correlaciones temporales de las unidades litológicas, intrusivas y estratificadas. Además, se definen las características estructurales de las provincias geomorfológicas presentes en la carta, correspondientes a los dominios de la Cordillera de la Costa y Precordillera. Así como también, los recursos minerales del tipo metálico existentes en ambos dominios, considerando la relación espacial y temporal de la mineralización.

La empresa consultora Knight Piésold (2010) realiza un estudio de impacto ambiental (EIA) al Proyecto de "Ampliación de Mina Jilguero", sometiéndolo al Sistema de Evaluación de Impacto Ambiental (SEIA). Se describen antecedentes generales del

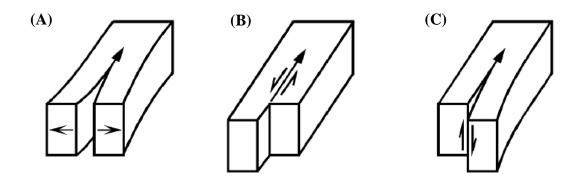
proyecto, reservas geológicas del yacimiento, la operación actual en el yacimiento; así como también una fase de construcción, de operación, y finalmente, de cierre y abandono del proyecto.

Tapia (2017) desarrolló un estudio estratigráfico y estructural del sector "Cantera Normal" ubicada en el sector SW de Mina Jilguero. Definió las unidades litoestratigráficas, considerando tanto la distribución, estratigrafía y condiciones genéticas generales de las mismas. Además, asignó las unidades útiles productivamente según la calidad aproximada de CaCO3 asociadas a cada unidad. También se realizó una descripción de las estructuras principales que afectan la cantera, para finalmente determinar los factores geológicos que controlan la distribución, forma y calidad de los niveles carbonatados productivos.

Lazo (2019) realizó el análisis de las impurezas que disminuyen la ley de la caliza presente en el yacimiento. Identificó que las principales impurezas que afectan en la minería de calizas corresponden al fierro, aluminio, magnesio, sulfato y sílice; siendo este último el enfoque del estudio, con tal de establecer la procedencia del óxido de silicio, y además la asociación mineral del mismo.

CAPÍTULO II

2. MARCO TEÓRICO


2.1. Generalidades Geología Estructural

Para efectos del presente estudio, se consideran estructuras geológicas a todas las fracturas, diaclasas, estratificaciones, fallas locales y regionales, sin importar su longitud.

2.1.1. Fracturas

Las fracturas son las estructuras más frecuentes en la superficie de la corteza terrestre, las cuales afectan la resistencia de las rocas a los esfuerzos, y su distribución condiciona el diseño de explotación de una mina (Niemeyer, 1999).

El término fractura, viene del latín *fractus* que quiere decir rotura. En geología se denomina fractura a una discontinuidad planar o curviplanar que se forma como resultado de un proceso de deformación frágil en la corteza terrestre (Martínez, 2003). Existen dos tipos de fracturas, según los esfuerzos que las producen; las producidas por esfuerzos tensionales y las producidas por esfuerzos de cizalla. Las asociadas a esfuerzos tensionales se llaman fracturas de tensión (Figura 2.1A) y se producen según superficies aproximadamente perpendiculares a la dirección de aplicación del esfuerzo. Una vez creadas, las dos partes del cuerpo a ambos lados de la fractura tienden a separarse (Martínez, 2003). Las fracturas producidas por esfuerzos de cizalla, nombradas fracturas de cizalla, pueden presentar dos modos de ruptura; un desplazamiento paralelo al plano de fractura y normal al frente de propagación de la misma (figura 2.1B), y un desplazamiento de los bloques paralelo al plano y al frente de propagación de la fractura (figura 2.1C) (Niemeyer, 1999).

Figura 2.1. Clasificación de fracturas. La flecha de mayor tamaño refleja la dirección y sentido de propagación de la fractura, mientras que las flechas de menor tamaño indican el sentido de movimiento relativo de los bloques (extraído de Niemeyer, 1999)

2.1.2. Diaclasas

Podemos definir una diaclasa, también llamadas juntas o *joints*, como un arreglo regular de fracturas a lo largo de las cuales ha habido un poco o nada de desplazamiento (McClay, 1987). Comúnmente, se reconocen en familias con espaciados regulares que pueden ser reconocidos en áreas con poca deformación (Nickelsen y Hough, 1967), sin embargo, en otras ocasiones, pueden tener un espaciado irregular (Segall y Pollard, 1983).

Las juntas son demasiado numerosas y pequeñas para ser mapeadas individualmente (Hustrulid et al., 2001), por tanto, se analizan a través de sus asociaciones. Según las relaciones que existan entre diaclasas, se pueden distinguir familias de diaclasas y sistemas de diaclasas. Las primeras corresponden a un grupo de diaclasas sistemáticas (paralelas a subparalelas entre sí, y con un espaciado regular), y asociadas genéticamente que aparecen en una región determinada, y cuando se presentan dos o más familias de diaclasas que se intersectan formando ángulos relativamente constantes, se les llaman sistemas de diaclasas (Martínez, 2003).

2.1.3. Fallas

Existen numerosas definiciones para el término falla dentro de la comunidad geológica. Según Fossen (2010), una descripción simple y tradicional, corresponde a cualquier superficie o zona estrecha con desplazamiento de cizalle visible a lo largo del terreno. Así como también Niemeyer lo define como: «Falla es una fractura planar a lo largo de la cual la roca se ha desplazado según una dirección que es generalmente paralela al plano de ruptura, como consecuencia de la aplicación de un stress de cizalle» (Niemeyer, 1999, p.

23). Sin embargo, el grosor de una falla es otra situación, además de la escala de descripción de las mismas. Por tanto, surge otra definición que consiste en que:

"Una falla es un volumen tabular de roca consistente de un núcleo o superficie central de deslizamiento, formado por un intenso cizalle, y un volumen de roca circundante que ha sido afectado por una deformación frágil más suave espacial y genéticamente asociada a la falla" (Fossen, 2010, p.152).

En fallas no verticales se separa la pared colgante o *hanging wall* de la pared yacente o *foot wall*. En caso de presentarse una falla normal la pared colgante desciende respecto a la pared yacente. Mientras que, en una falla inversa, la pared colgante asciende respecto a la pared yacente. Si el movimiento es lateral, corresponde a una falla de rumbo, la cual puede ser sinestral o dextral (Fossen, 2010). Además, existen las fallas con rechazo oblicuo, las cuales dependen del valor del *rake*. Según Niemeyer (1999), para un *rake* menor que 45°, predomina la componente transcurrente, siendo la falla: dextral-normal, dextral-inversa, sinestral-normal o sinestral-inversa.

2.2. Clasificación de discontinuidades

Se clasifican las estructuras según lo propuesto por Hustrulid et al. (2001), quienes clasifican las estructuras geológicas para desarrollos mineros en superficie según su escala de influencia en el macizo rocoso, y por tanto, se considera la longitud de la traza de las mismas para su posterior análisis. Se señala que aquellas discontinuidades que son lo suficientemente grandes para ser mapeadas y localizadas según la escala de trabajo como estructuras individuales, son definidas como estructuras mayores. Estas estructuras poseen una traza mínima equivalente a la altura de un banco de diseño; es decir, para el caso de Cantera Normal equivale a una traza superior a los 10 metros. Además, las estructuras mayores se subdividen en dos subcategorías, reconociendo estructuras intermedias y regionales dentro de esta clasificación. En caso de que se correlacionen estructuras mayores en terreno, con trazas superiores a la altura de dos bancos y menor a 100 metros, se clasifican como estructuras intermedias. Luego, aquellas estructuras que poseen una traza mínima de 100 metros, se les denominan estructuras regionales (Hustrulid et al.,

2001), como por ejemplo, las trazas de fallas asociadas al despegue Cerrillos en la zona de estudio. Por último, las discontinuidades que sean demasiado numerosas y no permitan ser individualizadas en el mapeo, se clasifican como estructuras menores; tales como: diaclasas y fallas con trazas inferiores a los 10 metros.

Por tanto, para una mejor comprensión de la clasificación de estructuras geológicas, se propone la clasificación presentada en la tabla 2.1, la cual es basada en las subdivisiones de Hustrulid et al. (2001).

Orden de magnitud de las	Definición
discontinuidades	
Estructuras mayores de primer orden	Estructuras con trazas superiores a los
	100 metros.
Estructuras mayores de segundo orden	Estructuras con trazas inferiores a los 100
	metros y superiores a los 20 metros (2
	bancos de diseño).
Estructuras mayores de tercer orden	Corresponderán a las estructuras que solo
	afecten un banco de diseño; tales como
	estratificaciones o fallas con trazas
	métricas superiores a los 10 metros e
	inferiores a los 20 metros.
Estructuras menores de cuarto orden	Estructuras que no permitan ser
	individualizadas por la escala de mapeo;
	tales como diaclasas y fallas con trazas
	inferiores a la altura de un banco de
	diseño.

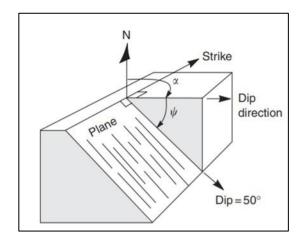
Tabla 2.1. Clasificación de discontinuidades.

2.3. Generalidades Mecánica de Rocas

La inestabilidad de taludes es un carácter condicionante en la minería a cielo abierto, ya que, a través del correcto conocimiento de la estabilidad del talud, se pueden controlar aspectos económicos, sociales y de seguridad, en un proyecto minero. Desde esta situación surge el rol de la mecánica de rocas, la cual "se ocupa del estudio teórico y práctico de las propiedades y comportamiento mecánico de los materiales rocosos, y de su respuesta ante la acción de fuerzas aplicadas en su entorno físico" (González de Vallejo et al., 2004, p. 118).

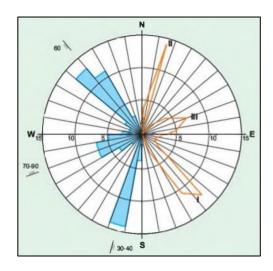
Según González de Vallejo et al. (2004), en la mecánica de rocas se menciona comúnmente una matriz rocosa o roca intacta, la cual no se encuentra afectada por discontinuidades o planos de debilidad. El conjunto de roca intacta y discontinuidades, conforman los macizos rocosos. Así, el macizo rocoso contiene roca intacta delimitada por superficies de debilidades, tales como fallas, diaclasas, planos de estratificación, y otras estructuras.

El macizo rocoso es definido por las siglas "DIANE", lo que significa discontinuo, heterogéneo, anisótropo e inelástico, según sus siglas en inglés (Hudson y Harrison, 1995). La naturaleza discontinua del macizo rocoso está relacionada con la litología que conforma el macizo, así como con las superficies de debilidades que componen el mismo. La heterogeneidad se representa en el cambio de las propiedades físicas y mecánicas en función de la dirección utilizada para su medida, lo cual está relacionado al comportamiento anisótropo del macizo rocoso, lo que se refiere a que las propiedades mecánicas son distintas según la dirección considerada (González de Vallejo et al., 2004); siendo para la mecánica de rocas, las propiedades de resistencia y deformación las de mayor relevancia respecto a la anisotropía del macizo (Ramírez y Alejano, 2004).


2.3.1. Propiedades de las discontinuidades

Las discontinuidades condicionan las propiedades y el comportamiento de los macizos rocosos, por lo que conocer los parámetros que definen sus propiedades, permiten estimar con mayor precisión el comportamiento de los mismos (González de Vallejo et al., 2004).

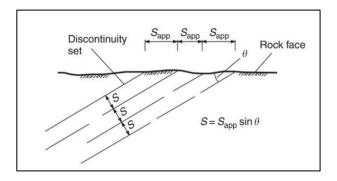
2.3.1.1. Orientación


La orientación, o también denominada actitud de una discontinuidad en el espacio, es descrita a través de su buzamiento (manteo o *dip*; figura 2.2), lo que corresponde a la máxima declinación de la superficie de discontinuidad medida desde su horizontal; así como también, se define la orientación mediante la dirección de buzamiento (dirección de inclinación o *dip direction*; figura 2.2), medida según las agujas del reloj desde el norte geográfico (Brady y Brown, 2004), puede ser definida desde los 0° hasta los 360° (González de Vallejo et al., 2004).

Existen casos, en que se toma el rumbo o *strike* (ángulo que se forma en la horizontal entre la dirección del plano y el norte geográfico, medido en sentido horario desde este último; figura 2.2), en vez de la dirección de inclinación, pero se recomienda más bien recopilar la información de la forma dirección de inclinación/manteo para propósitos geomecánicos (Brady y Brown, 2004).

Figura 2.2. Terminologías que definen la orientación de superficies de discontinuidades (extraído de Wyllie y Mah, 2004).

Luego de poseer una densidad de información considerable, es posible definir las familias de discontinuidades con sus respectivas orientaciones, en donde González de Vallejo et al. (2004), afirman que la información se puede representar gráficamente mediante proyecciones estereográficas, diagramas de rosetas (figura 2.3), bloques de diagrama y símbolos de mapas geológicos, con tal de visualizar de mejor forma las orientaciones preferenciales en los distintos dominios estructurales.


Figura 2.3. Datos de orientación representados en un diagrama de rosetas (extraído de González de Vallejo et al., 2004).

2.3.1.2. Espaciamiento

El espaciamiento de las discontinuidades determina el tamaño de bloque en el talud, lo cual puede impactar en el tamaño de posibles deslizamientos, o bien, en el diseño del sostenimiento (Wyllie y Mah, 2004). Este parámetro, corresponde a "la distancia perpendicular entre discontinuidades adyacentes, y son usualmente expresadas como el espaciamiento principal de un set de juntas" (Brady y Brown, 2004, p.51), y su medición en terreno se realiza mediante una cinta métrica, según la clasificación de Bieniawski (1989), presentada en la tabla 8.3 (Anexo B). González de Vallejo et al. (2004), plantean que el comportamiento en los procesos de deformación y rotura del macizo rocoso dependen principalmente del tamaño de los bloques del mismo. Entonces, para espaciamientos métricos prevalecerán las propiedades de la matriz rocosa; si los espaciados son menores, desde decímetros a 1 o 2 metros, el comportamiento del macizo es controlado por los planos de debilidad; y si el macizo se encuentra demasiado fracturado, presentará un comportamiento "isótropo".

Un factor a considerar durante la toma de datos en terreno, corresponde a la orientación relativa entre la discontinuidad y el talud, al momento de realizar la medición del espaciamiento (Wyllie y Mah, 2004). Ya que el espaciamiento corresponde a la distancia perpendicular entre las discontinuidades adyacentes, se debe tener especial cuidado entre la relación del ángulo del talud y la orientación de las discontinuidades, provocando que existan ocasiones en que se observe un espaciamiento aparente (S_{app}) , y por tanto,

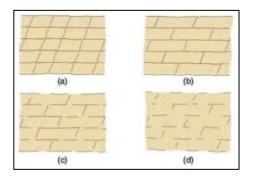

mediciones incorrectas del verdadero espaciamiento (*S*); lo cual se puede observar en la representación esquemática de la figura 2.4.

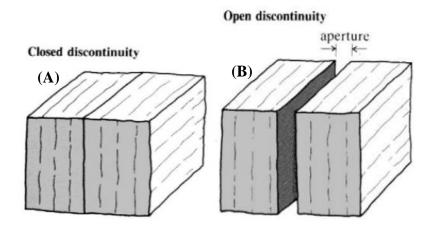
Figura 2.4. Se visualiza la diferencia entre el espaciamiento de discontinuidades (representado por la letra S), y el espaciamiento aparente (S_{app}); además de la relación entre ambos parámetros (extraído de Wyllie y Mah, 2004).

2.3.1.3. Continuidad o persistencia

Corresponde a uno de los parámetros más importantes en el macizo rocoso, ya que, en conjunto con el espaciamiento, determinan el tamaño de bloques que pueden generar deslizamientos; sin embargo, es uno de los parámetros más complejos de determinar (Wyllie y Mah, 2004). La continuidad o persistencia, según Brady y Brown (2004), es definida como "el término utilizado para describir la extensión o tamaño de una discontinuidad en un plano" (p.53), y es clasificado según la medida de las trazas en terreno mediante la clasificación de Bieniawski (1989) expuesta en la tabla 8.4. (Anexo B). La figura 2.5 muestra un bosquejo de perfil de las continuidades de distintos sets (o familias) de discontinuidades, con tal de tener una ayuda respecto a la visualización de macizos rocosos persistentes, a otros menos continuos.

Figura 2.5. Ilustración que refleja distintas continuidades de varias familias de discontinuidades, desde un modelo más persistente (a), a otros menos continuos (d) (modificado de González de Vallejo et al., 2004).

Generalmente, las discontinuidades que requieren mayor atención corresponden a los diques y fallas, ya que son estas las que presentan una mayor continuidad, y condicionan por ende, posibles planos de rotura en el macizo rocoso (González de Vallejo et al., 2004). Por otro lado, se debe tener un especial énfasis en condiciones que sean favorables para la estabilidad del macizo, como lo plantean Wyllie y Mah (2004); según los autores cuando se presenta una pequeña área de roca intacta entre discontinuidades de baja persistencia, el macizo rocoso tendrá a menudo una mayor resistencia respecto a los esfuerzos de cizalle que actúan en el talud.


2.3.1.4. Rugosidad

La rugosidad corresponde a la medida de las irregularidades y ondulaciones de la superficie de discontinuidad (Brady y Brown, 2004). Este parámetro, tiene como fundamento evaluar la resistencia al corte de los planos (τ). A mayor rugosidad, existe un aumento de la resistencia al corte; el cual es inversamente proporcional a la abertura, y generalmente, también con el espesor de relleno (González de Vallejo et al., 2004).

Wyllie y Mah (2004), recomiendan que, durante las primeras etapas de alguna investigación, se evalúen los comparadores visuales del Coeficiente de Rugosidad de Juntas o JRC (Figura 8.1, Anexo A), por sus siglas en inglés (*Joint Roughness Coefficient*) (Barton, 1973).

2.3.1.5. Abertura

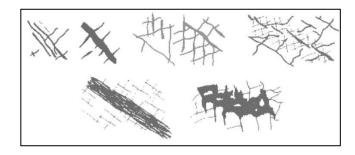

Este parámetro corresponde a la "distancia perpendicular de separación entre las paredes adyacentes de roca de una discontinuidad abierta en que el espacio intermedio está relleno con aire o agua" (Brady y Brown, 2004, p.55), el cual se representa en la figura 2.6. Según González de Vallejo et al. (2004), la abertura posee una influencia importante en la resistencia al corte, ya que modifica las tensiones efectivas que actúan sobre las paredes, por lo que su medición es imprescindible. Dichas mediciones se realizan para cada familia de discontinuidad, considerando un valor medio que sea representativo.

Figura 2.6. Representación esquemática de una discontinuidad cerrada (A) y una discontinuidad abierta (B), indicando su abertura (modificado de Brady y Brown, 2004).

2.3.1.6. Relleno

Corresponde al parámetro que describe el material que separa las paredes de roca adyacentes de una discontinuidad (Brady y Brown, 2004), en donde el espesor es equivalente a "la distancia perpendicular entre los labios que ocupa dicho relleno" (Ramírez y Alejano, 2004, p.195). Ya que los materiales que rellenan una discontinuidad pueden tener propiedades físicas y mecánicas muy variadas, gobernando por ende, el comportamiento en los esfuerzos de corte de las discontinuidades (González de Vallejo, 2004). Además, los autores Ramírez y Alejano (2004), recomiendan realizar esquemas de los tipos de rellenos en discontinuidades (figura 2.7), así como señalan que cuando existe una diferencia importante entre los espesores máximos y mínimos de una discontinuidad, puede deberse a la influencia de desplazamientos cortantes.

Figura 2.7. Esquemas ilustrativos de tipos de rellenos en discontinuidades (extraído de Ramírez y Alejano, 2004).

2.3.1.7. Meteorización del macizo rocoso

La meteorización en las rocas puede ser definida como la alteración superficial de la misma por su reacción con gases atmosféricos o soluciones acuosas; la cual puede ser tanto física, como química (Brady y Brown, 2004). Determinar el grado de meteorización en el macizo rocoso es esencial para la mecánica de rocas, ya que la meteorización física y/o química del macizo, condiciona las propiedades físicas y mecánicas del mismo (Ramírez y Alejano, 2004).

La meteorización es un proceso que comúnmente no penetra a gran profundidad el macizo rocoso, pero una vez que se realizan modificaciones, tales como excavaciones, el contacto atmosférico produce paulatinamente la meteorización de la roca, provocando a lo largo del tiempo que la roca sana o fresca se transforme en suelo (Ramírez y Alejano, 2004). Esto ha generado que para evaluar el grado de meteorización en mecánica de rocas se utilicen estándares relacionados con este proceso desde roca fresca a suelo residual, como el señalado en la tabla 8.1 (Anexo A).

2.3.2. Clasificaciones Geomecánicas

Los sistemas de clasificación geomecánica de los macizos rocosos están basados en distintos factores que determinan su comportamiento mecánico, teniendo por objetivo evaluar cuantitativamente la calidad de los mismos, y para ello, se deben estudiar las propiedades de la matriz rocosa y de las discontinuidades de diverso tipo que componen el macizo rocoso (González de Vallejo et al., 2004).

Entre los factores que son necesarios estudiar para clasificar geomecánicamente el macizo rocoso, se encuentran: la resistencia y comportamiento de la roca, las familias de discontinuidades presentes, el espaciado de las discontinuidades del macizo, los distintos caracteres geomecánicos de las discontinuidades (orientación, continuidad, rugosidad, abertura, relleno, persistencia, meteorización), tensiones *in situ* (naturales o inducidas), alteraciones producto de las excavaciones en el macizo rocoso, así como también, las condiciones de agua en las juntas (Ramírez y Alejano, 2004).

Según Brady y Brown (2004), existen una variedad de clasificaciones geomecánicas, destacándose dos de ellas: (i) la desarrollada por Barton et al. (1974) correspondiente al índice de calidad Q; y (ii) la elaborada por Bieniawski (1973, 1976), denominada RMR

(*Rock Mass Rating*). Además, existe un indicador más actual, introducido por Hoek (1994), y desarrollado más tarde por Marinos y Hoek (2000), que corresponde al GSI (*Geological Strength Index*). El presente trabajo, se sustenta en el sistema de Bieniawski (RMR) y en el GSI de Marinos y Hoek (2000).

2.3.2.1. Rock Mass Rating (RMR)

El sistema de Bieniawski (1973, 1976, 1989), desarrolló su esquema mediante la información obtenida en excavaciones de rocas sedimentarias en África del Sur (Brady y Brown, 2004). Este sistema evalúa la calidad del macizo rocoso a través de los siguientes 6 parámetros: Resistencia a compresión simple, *Rock Quality Designation* (RQD), espaciado de las juntas, naturaleza de las juntas, presencia de agua y orientación de las discontinuidades (Ramírez y Alejano, 2004). Una vez efectuado el sistema, se obtienen valores que van desde 0 a 100, clasificando el macizo rocoso en 5 clases, en donde a cada clase se le asigna una calidad y características geotécnicas (González de Vallejo et al., 2004), descritas en la tabla 8.13 (Anexo B).

2.3.2.1.1. Resistencia a compresión simple

Este parámetro puede ser medido mediante ensayos de laboratorio, tales como el ensayo de compresión simple y el ensayo de carga puntual. Este último ensayo es utilizado en caso de que se dificulte cumplir con las exigencias del ensayo de compresión simple, o bien, para rocas de muy baja resistencia (Brady y Brown, 2004). En situaciones que no se dispongan de ensayos de laboratorio, se puede realizar una estimación de la resistencia de las rocas en campo mediante la utilización de un martillo de geólogo y una navaja (tabla 2.2). También, existe una estimación de los valores de resistencia a compresión simple de distintos tipos de rocas, el cual se presenta en la tabla 8.11 (Anexo B).

Grado	Descripción	Identificación de campo	Valor aproximado de la resistencia a compresión simple en MPa
R0	Extremadamente débil	Se puede penetrar con el dedo pulgar	0,25-1,0
R 1	Muy débil	Deleznable bajo golpes fuertes con la parte puntiaguda del martillo geológico; puede cortarse con una navaja.	1,0-5,0
R2	Débil	Puede cortarse con dificultad con una navaja; se pueden hacer marcas poco profundas golpeando fuertemente la roca con la punta del martillo	5,0-25
R3	Media	No se puede cortar con una navaja; las muestras se pueden romper con un golpe firme con el martillo.	25-50
R 4	Resistente	Se necesita más de un golpe con el martillo geológico para romper la muestra.	50-100
R 5	Muy resistente	Se necesitan muchos golpes con el martillo geológico para romper la muestra.	100-250
R6	Extremadamente resistente	Sólo se pueden desprender esquirlas de la muestra con el martillo geológico.	>250

Tabla 2.2. Estimación de la resistencia a compresión simple de las rocas en campo (extraído de Ramírez y Alejano, 2004).

2.3.2.1.2. Rock Quality Designation (RQD)

En el año 1967, Deere propone un sistema de diseño de sostenimiento basado en un parámetro denominado RQD (Ramírez y Alejano, 2004). Deere, en un intento de cuantificar el espaciamiento de las discontinuidades, obtiene el parámetro mediante testigos de sondeos (Brady y Brown, 2004), en los que calcula el porcentaje de trozos de testigo mayores a los 10 cm recuperado, permitiendo estimar el grado de fracturación del macizo rocoso (Ramírez y Alejano, 2004). El RQD se calcula mediante la expresión:

$$RQD = \frac{\sum longitud\ de\ los\ trozos\ de\ testigo > 10\ cm}{longitud\ total} \times 100 \qquad (2.1)$$

En base al valor obtenido se clasifica el macizo rocoso según la tabla 8.12 (Anexo B). A pesar de la utilidad del RQD, este no considera parámetros de gran importancia, tales como las condiciones de las discontinuidades (orientación, separación, relleno, etc.) (González de Vallejo et al., 2004), por lo que no se recomienda como una clasificación del macizo rocoso por sí solo. Además, existe otro procedimiento para calcular el RQD,

propuesto por Priest y Hudson (1976), basado en el mapeo por línea de detalle. Los autores elaboran una fórmula de distribución exponencial negativa, relacionando el RQD con el número promedio de discontinuidades por metro, teniendo por tanto la expresión siguiente:

$$RQD = 100e^{-0.1\lambda}(0.1\lambda + 1)$$

Donde,

 λ =Número de discontinuidades por metro lineal.

La utilización del procedimiento propuesto por Priest y Hudson (1976), permite realizar la medición del RQD en los frentes de explotación, a pesar de la ausencia de testigos de sondajes, siendo por tanto la metodología utilizada en el presente trabajo.

2.3.2.1.3. Espaciado de las juntas

El término juntas en este contexto, se refiere a todo tipo de discontinuidades (Brady y Brown, 2004), es decir, fallas, diaclasas, estratificaciones, etc. La resistencia del macizo rocoso disminuye conforme van aumentando el número de juntas, es decir, mientras disminuyen los espaciados de cada familia (Ramírez y Alejano, 2004). Existen distintas clasificaciones para el espaciado de las juntas. La utilizada corresponde a la propuesta por Bieniawski (1989), la cual se presenta en la tabla 8.3 (Anexo B).

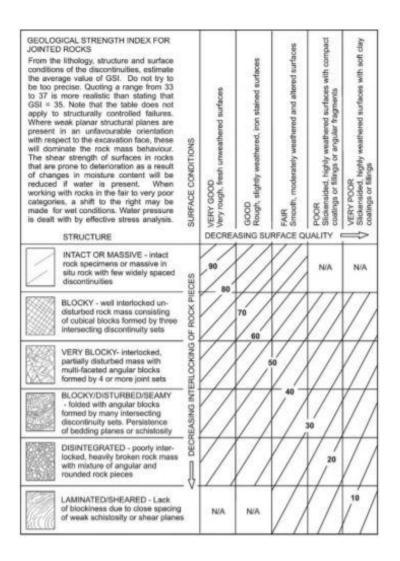
2.3.2.1.4. Naturaleza de las juntas

Según los autores Brady y Brown (2004), este parámetro considera la continuidad o persistencia (tabla 8.4, Anexo B), la rugosidad superficial (tabla 8.5, Anexo B), su separación o apertura de las discontinuidades (tabla 8.7, Anexo B), la condición de la pared (dura o blanda), y la naturaleza de cualquier material de relleno presente (tabla 8.8, Anexo B).

2.3.2.1.5. Presencia de agua

En un macizo rocoso diaclasado, el agua tiene un carácter fundamental en el comportamiento del mismo, en donde se debe estimar el flujo de agua en litros/min. La descripción utilizada es la siguiente: completamente seco, húmedo, agua a presión moderada y agua a presión fuerte (Ramírez y Alejano, 2004). Particularmente en la faena,

esta no califica con influencias de filtraciones de agua, por lo que se considera este parámetro como completamente seco.


2.3.2.1.6. Orientación de las discontinuidades

Según la orientación de las discontinuidades respecto a la orientación de la labor subterránea, Bieniawski (1989) cuantifica una corrección al valor del RMR. Sin embargo, ya que el presente estudio se desarrolla en una labor a cielo abierto, no se considera la evaluación de este parámetro.

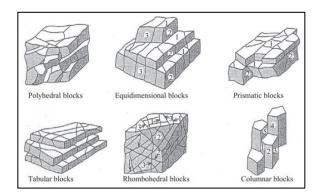
2.3.2.2. Geological Strength Index (GSI)

Para continuar con el desarrollo e incluir aplicaciones prácticas para el criterio de rotura de Hoek y Brown (1980), se introduce un nuevo sistema de clasificación del macizo rocoso conocido como *Geological Strength Index* (GSI), propuesto y elaborado por Hoek (1994) y Hoek et al. (1995). Los autores Hoek y Brown consideraron que las clasificaciones RMR (Bieniawski, 1973) y Q (Barton, 1973), habían sido creadas para estimar el sostenimiento de túneles y excavaciones subterráneas, por lo que incluyen parámetros que no son necesarios en un criterio de rotura; tales como, la orientación de las estructuras, el estado tensional, las condiciones y las características del agua subterránea (Ramírez y Alejano, 2004).

El GSI fue desarrollado para contabilizar las propiedades de las discontinuidades o del macizo rocoso que influyen en su resistencia y deformabilidad, por tanto, este sistema cualitativo de clasificación, contabiliza dos características del macizo (Brady y Brown, 2004): (1) la estructura del mismo, representada por su "blocosidad" y grado de trabado entre bloques, y (2) la condición de la superficie de las discontinuidades. Los autores Marinos y Hoek (2000), proponen una serie de tablas que muestra los valores de GSI para macizos rocosos generalizados, como se puede observar en la figura 2.8.

Figura 2.8. *Geological Strength Index* (GSI) para el macizo rocoso fracturado (extraído de Marinos y Hoek, 2000).

2.3.2.3. Correlación entre RMR '89 y GSI

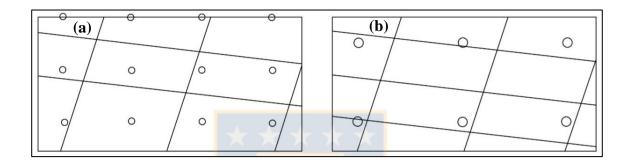

El índice GSI puede obtenerse a partir de la versión de 1989 del RMR de Bieniawski, mediante la siguiente correlación:

$$GSI = RMR_{89} - 5$$
; $para RMR_{89} > 25$ (2.3)

En el caso de usar esta correlación, se debe asignar un valor de 15 para las condiciones de agua (macizo rocoso seco), y un valor de 0 al parámetro de ajuste por orientación de las discontinuidades (González de Vallejo et al., 2004; Ramírez y Alejano, 2004).

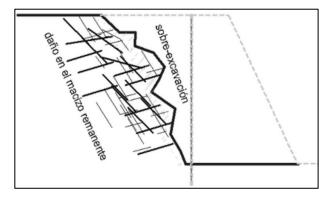
2.4. Dominios estructurales

Un dominio representa un volumen de macizo rocoso con características similares, tales como la orientación de juntas, su resistencia y la litología presente (Martin y Tannant, 2004). Según Zhou et al. (2019), un dominio estructural es identificado al comparar las características de discontinuidades entre dos regiones de un macizo rocoso, y estas características son similares. Típicamente, la característica predominante en el análisis de dominios estructurales corresponde a la orientación de sus discontinuidades, ya que usualmente es la principal característica que afecta el comportamiento del macizo rocoso (Martin y Tannant, 2004). Hustrulid et al. (2001), añaden que un dominio estructural son zonas en que la distribución de las orientaciones, largo de trazas y espaciamiento de sus discontinuidades son similares, además de poseer de la misma forma, una resistencia al corte equivalente. Por tanto, para el presente trabajo se considera relevante considerar, además de las orientaciones, las características que definen el tamaño de un bloque y su tipo (figura 2.9), es decir, el espaciamiento y continuidad de las trazas (Wyllie y Mah, 2004), así como también, el análisis estereográfico de las orientaciones de las discontinuidades mediante proyecciones estereográficas. Esta última corresponde, a una proyección de la información, en un hemisferio de referencia, para evaluar la frecuencia de las orientaciones en un área (Martin y Tannant, 2004), lo cual permite identificar los sistemas estructurales principales, evaluando el rumbo, dirección de inclinación y manteo en cada sistema.


Figura 2.9. Ejemplo esquemático de los tipos de bloques generalmente observados en los macizos rocosos (extraído de Zhang, 2016).

Según Hustrulid et al. (2001), para realizar la separación de dominios estructurales, se deben considerar primeramente las características litológicas y de alteración presentes en el macizo rocoso, debido a que condicionan la resistencia del mismo. Luego se deben analizar las estructuras principales del sector de estudio, las cuales suelen determinar límites entre cada dominio, para posteriormente, determinar las orientaciones preferenciales de las estructuras (mayores y menores) presentes, y comparar cada zona, con tal de determinar los dominios estructurales existentes.

2.5. Generalidades del proceso de voladura


Las acciones antrópicas modifican los estados tenso-deformacionales y propiedades geotécnicas de los terrenos, generando inestabilidades (González de Vallejo et al., 2004). Entre estas acciones antrópicas se encuentra el proceso de voladura o tronadura, el que consiste en "un proceso tridimensional, en el cual las presiones generadas por explosivos confinados dentro de taladros perforados en la roca, originan una zona de alta concentración de energía que produce dos efectos dinámicos: fragmentación y desplazamiento" (EXSA S.A., 2013, p.147).

Las propiedades de los macizos rocosos influyen directamente en el diseño de las voladuras (López Jimeno et al., 2003), en donde la presencia de estructuras es considerada como el factor más influyente en los diseños, ya que controlan la resistencia a la tracción del macizo, e intervienen en la penetración y canalización de los gases. Es por esto que la distribución de discontinuidades va a determinar la ubicación de cada pozo de tronadura, tal como se puede observar en la figura 2.10, ya que la distancia entre pozos de tronadura debe ser menor al tamaño de bloques preformados en el macizo rocoso. Existen otras propiedades que también controlan el proceso de voladuras, entre las que se destacan la litología, grado de alteración y las propiedades resistentes de la matriz rocosa, las cuales condicionan la resistencia al fracturamiento del macizo rocoso (Moraga, 2018), siendo factores determinantes respecto a la efectividad de las tronaduras.

Figura 2.10. Se presentan dos diseños de mallas de tronadura. La figura (a) refleja un diseño adecuado entre la relación de la distancia de pozos y el tamaño de los bloques; mientras que la figura (b) presenta un diseño inadecuado, ubicando los pozos de tronadura en los límites de las discontinuidades (extraído de Moraga, 2018).

Uno de los objetivos principales de las voladuras, es minimizar el daño al macizo rocoso circundante a la excavación (González de Vallejo et al., 2004). Posterior a la realización de las tronaduras, el macizo rocoso es afectado a través de la disminución de las propiedades mecánicas resistentes del mismo. Un procedimiento de tronadura inadecuado se observa en la figura 2.11, en donde se puede incurrir en la sobre-excavación por detrás de la última hilera de barrenos perforada, o bien, dañar el macizo rocoso remanente que se encuentra detrás de la zona sobre-excavada (Ramírez y Alejano, 2004).

Figura 2.11. Ilustración que refleja un macizo rocoso dañado por efectos de las tronaduras (extraído de Ramírez y Alejano, 2004).

Por tanto, según Ramírez y Alejano (2004), si se logra controlar el efecto de la tronadura hacia el macizo rocoso, se disminuyen costos y se aumenta la seguridad en las faenas, siendo relevante la comprensión de los distintos parámetros geomecánicos, con tal de optimizar el proceso de voladura.

CAPÍTULO III

3. METODOLOGÍA DE TRABAJO

En el presente capítulo se explican las características metodológicas del trabajo de tesis realizado en Cantera Normal de Mina Jilguero, subdividiendo la Cantera en los sectores Ventana y Normal Superior.

Las labores se realizaron durante el año 2020 y 2021, finalizando el mapeo geológico escala 1:500 y el mapeo geotécnico escala 1:100 durante abril de 2021, conformando un total de 97 estaciones de mapeo geotécnico, y midiéndose 324 datos estructurales a lo largo de la faena minera. Cabe destacar que el sistema de coordenadas utilizado corresponde a PSAD 56, en donde se modifica la coordenada norte, restándole a esta última 6.900.000 metros, con tal de simplificar la cantidad de numeración de las coordenadas. Es por esto, que se utiliza un sistema de coordenadas locales.

3.1. Etapa de gabinete

En primera instancia es fundamental realizar una revisión exhaustiva de la información bibliográfica referente a la zona de estudio, a través del análisis de las cartas geológicas del sector, es decir la Carta Copiapó (Arévalo, 2005); así como también, una revisión de los trabajos anteriores realizados en el sector de interés. Además, la obtención de información por medio de publicaciones científicas y trabajos de tesis que contribuyen con la compresión, tanto crítica como conceptual, del trabajo a realizar.

3.2. Etapa de terreno

La distribución espacial de los puntos recolectados para la información litológica, estructural y geotécnica, se realizó mediante equipos topográficos, tales como los GPS Navcom 3040 y Stonex S9III Plus (figura 3.1).

Figura 3.1. Equipo topográfico GPS Stonex S9III Plus instalado en Cantera Normal.

3.2.1. Mapeo geológico

Se desarrolló un mapeo geológico escala 1:500 con énfasis en las estructuras existentes, identificando propiedades respecto a la litología, grados de alteración y trazas de estructuras principales. A estas últimas, se les identificó su zona de daño, minerales de alteración, y en las situaciones que correspondían, los cuerpos ígneos asociados. Se reconocen las unidades litológicas presentes, además de caracterizarlas, delimitar su distribución y relaciones de contacto. Se recopilan datos estructurales de estratificación y diaclasado en las unidades litológicas; y de las estructuras se miden las orientaciones de planos de falla y lineaciones (en caso de permitirse la medición). Los datos estructurales son medidos mediante una brújula Brunton estructural 5009, utilizando el círculo completo como tipo de medición, registrando la dirección de inclinación y manteo (dip direction/dip).

3.2.2. Mapeo geotécnico de discontinuidades

El mapeo geotécnico escala 1:100 se realizó mediante estaciones geomecánicas ubicadas banco a banco y separadas cada 25 metros entre sí, identificándolas con la letra C y el número respectivo que la caracterizaba correlativamente. Los puntos de estaciones y puntos de control se realizaron mediante el levantamiento de monolitos, distinguiéndolos con cintas de colores llamativos (rojo), para luego realizar el levantamiento topográfico

de los mismos mediante equipos topográficos (figura 3.2). Los parámetros registrados se basan en la información necesaria para la clasificación geomecánica del RMR (Bieniawski, 1989), registrándolos en una planilla durante el mapeo geotécnico (figura 8.2, Anexo A). Para el cálculo del RQD, se registró el número de discontinuidades por metro lineal propuesto por Priest y Hudson (1976), para los frentes de explotación. Cabe destacar que el mapeo geotécnico fue desarrollado coetáneamente con el mapeo geológico, ya que la disponibilidad del mapeo de bancos era limitada por las actividades de producción.

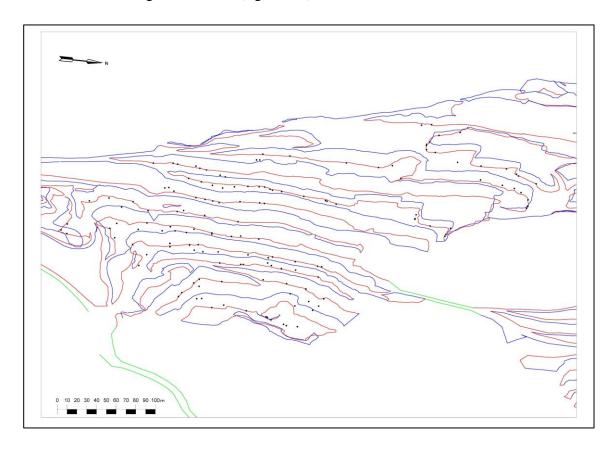
Figura 3.2. Levantamiento de puntos topográficos de las estaciones de mapeo en terreno mediante GPS Stonex S9III Plus.

3.3. Etapa de gabinete II

Luego de recolectar la información necesaria en terreno, se procede a traspasar los datos a distintos tipos de *software*, con tal de realizar un análisis exhaustivo.

La información obtenida en terreno es recopilada mediante planillas Excel, subdivididas principalmente en mapeo geotécnico de discontinuidades, datos estructurales (estratificaciones, diaclasas, estructuras menores, estructuras mayores), y cálculo de RQD

según parámetros λ_h y λ_v . Además, se utilizó el *software* para la realización de gráficos, con tal de visualizar de mejor forma la información recolectada del mapeo geotécnico de discontinuidades.


Se utilizó el *software* Dips 7.0 para analizar las orientaciones de las estructuras mayores y menores de la faena, mediante diagramas de roseta simple y diagramas de proyección estereográfica; con tal de identificar las orientaciones preferenciales respecto a las trazas de estructuras mayores, estratificaciones, trazas de fallas menores y diaclasas.

También se utilizó el *software* Datamine Studio RM versión 1.4, en el cual se realizó la recopilación de la información espacial, con tal de favorecer la comprensión de lo observado en terreno. Se importaron los datos de las estaciones de mapeo y puntos de control, identificando las litologías presentes, así como las estructuras que afectan la faena. Mediante el uso de la aplicación computacional, se obtiene un mapa estructural preliminar escala 1:500, en que se visualiza la distribución espacial de las estructuras mayores de primer, segundo y tercer orden. Además, se elabora un mapa geológico escala 1:500, en donde se compila la distribución de las distintas unidades geológicas identificadas en faena, así como las estructuras principales. Por último, se recopilan las valoraciones obtenidas de las observaciones del macizo rocoso en terreno, ingresando los valores de RMR₈₉ y GSI de cada estación de mapeo al *software*, y se realiza la zonificación de las calidades geotécnicas del macizo rocoso de Cantera Normal.

CAPÍTULO IV

4. RESULTADOS

En el presente capítulo se exponen los resultados del mapeo geológico-estructural de superficie escala 1:500. Además, se expone la información recolectada del mapeo geotécnico de discontinuidades, y los dominios estructurales propuestos según la información obtenida en terreno; a través de 97 estaciones de mapeo, y puntos de control distribuidos a lo largo de la faena (figura 4.1).

Figura 4.1. Vista de perfil hacia el WSW de Cantera Normal. Los puntos de color negro reflejan la distribución de las estaciones de mapeo y puntos de control definidos. La topografía está definida por las líneas azules (bordes de bancos), rojas (patas de banco), y verdes (caminos).

4.1. Geología

Se presenta en la figura 4.2 el mapa geológico-estructural de superficie escala 1:500, a partir de la información recolectada banco a banco. Se identifican las 6 unidades ya descritas en subcapítulo 1.4, así como subdivisiones analizadas en conjunto con la geóloga de Mina Jilguero, Beranyel Caiceo. Se subdividen las unidades de Caliza Inferior y Caliza Superior, debido a unidades de estéril que seccionan ambos estratos. La unidad de Caliza Inferior es divida por una roca calcárea gris con contenidos elevados de óxido de silicio (~10%) debido a la presencia de cristales anhedrales a subhedrales de plagioclasas, denominada como Caliza Inferior silícea. El estrato de Caliza Superior es distinguible en Caliza Superior 2 (hacia techo), la cual posee un contacto por falla con la unidad Lutita Fisible; y Caliza Superior 1 como la sección basal de la unidad Caliza Superior. Cabe destacar que la diferenciación litológica de la unidad Caliza Superior desaparece hacia el norte, identificándose esta unidad como un solo paquete. Además, se añade la unidad de Caliza Media Dolomitizada, ya que se identificó en terreno una dolomitización entre las unidades de caliza, en la sección septentrional del nivel 1135 m.s.n.m. Además, se observan secciones afectadas por cuerpos subverticales que presentan núcleos aislados subredondeados de rocas calcáreas, y clastos angulares a subredondeados de color pardo verdoso y composición microdiorítica, inmersos en una matriz que se compone de óxidos e hidróxidos de hierro, óxidos de manganeso, clorita, y arcillas blancas. Estos cuerpos tabulares, son definidos como diques de guijarros (figuras 4.3 y 4.4).

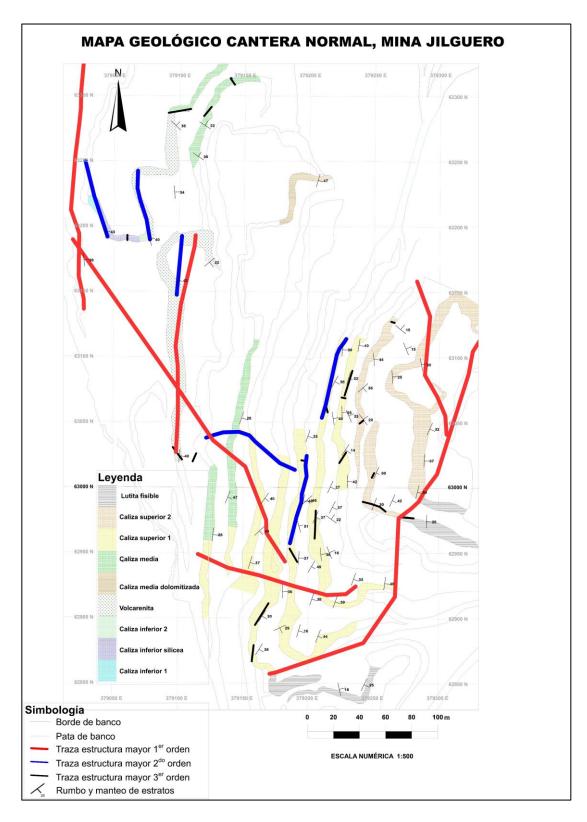
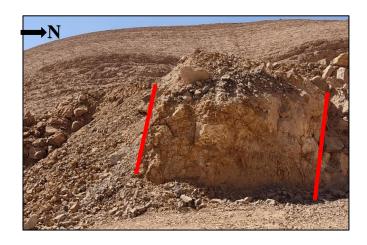
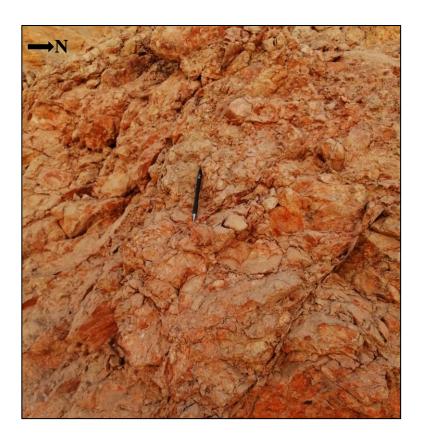
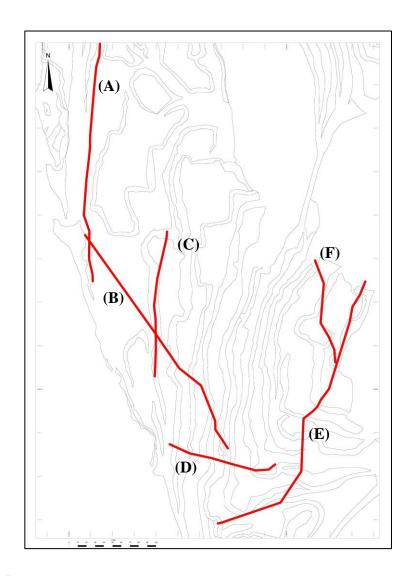




Figura 4.2. Mapa geológico-estructural escala 1:500 de Cantera Normal.

Figura 4.3. Dique de guijarro ubicado en el nivel 1070 m.s.n.m. de orientación WNW, en donde las líneas rojas demarcan la delimitación del cuerpo tabular.


Figura 4.4. Acercamiento de dique de guijarro ubicado en el nivel 1115 m.s.n.m. mostrando fragmentos subredondeados a subangulosos de caliza y microdiorita, inmersos en una matriz fina de óxidos e hidróxidos de hierro.

4.2. Geología Estructural

Se registraron un total de 324 datos estructurales en Cantera Normal (tabla 8.20, Anexo F), los cuales fueron importados al *software* Datamine Studio RM, identificando estructuras con trazas métricas lo suficientemente grandes para ser mapeadas e individualizadas. Dentro de estas últimas, se reconocen 6 trazas de estructuras mayores de primer orden, 6 estructuras mayores de segundo orden y 21 estructuras mayores de tercer orden en Cantera Normal. Su distribución espacial se puede observar en la figura 8.3 (Anexo D).

4.2.1. Estructuras mayores de primer orden

Se reconocen 6 estructuras con trazas superiores a los 100 metros, las cuales se caracterizan con las letras A, B, C, D, E y F; diferenciándolas según el comienzo de la traza desde occidente, hacia el este de la faena respectivamente. Su distribución se puede observar en la figura 4.5.

Figura 4.5. Representación de la distribución de las estructuras mayores de primer orden reconocidas en Cantera Normal, además de su nomenclatura (desde las letras A a la F).

La estructura A se encuentra en el sector occidental de la faena, con rumbo N-S y manteo de 45° aproximadamente hacia el este. La estructura se reconoce desde el nivel 1160 m.s.n.m. hasta la cota 1185 m.s.n.m., presentando un plano de 35 metros de altura y 280 metros de continuidad, siendo conocido en faena como "Paredón" (figura 4.6).

Figura 4.6. Vista hacia el norte del sector denominado Paredón desde el nivel 1160 m.s.n.m.

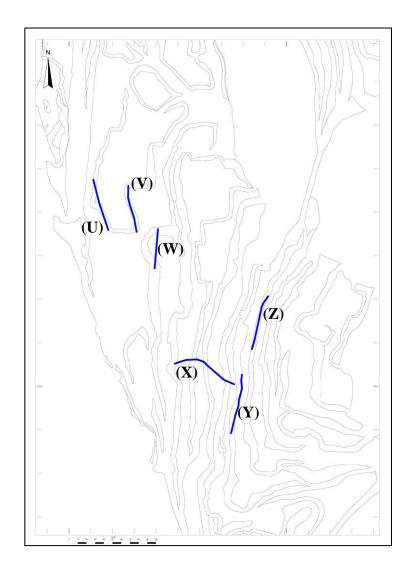
La estructura B posee un rumbo aproximado NW – SE asociado a la intrusión de un dique de guijarros subvertical (84 a 88°) con clastos subredondeados de color pardo verdoso y composición microdiorítica, inmersos en una matriz fina. Este fue reconocido en 4 sectores de Cantera Normal, denotando una continuidad de casi 300 metros. En el nivel 1160 m.s.n.m., la estructura posee una zona de daño de 4 metros; con matriz compuesta de óxidos de hierro y arcillas blanquecinas. En el nivel 1135 m.s.n.m., se exhibe continuidad de la estructura, distinguiéndose una zona de daño de 17 metros; con matriz de óxidos e hidróxidos de hierro, arcillas, además de vetillas de aragonito y pátinas de óxidos de manganeso. La estructura es observada en niveles inferiores, pero con espesor reducido; en el banco 1125 m.s.n.m. posee una zona de daño de 8,3 metros, mientras que en el nivel 1115 m.s.n.m. posee una zona de daño de 6 metros, añadiendo además la presencia de yeso y clorita a la estructura tabular.

La estructura C es observada netamente en el banco 1150 m.s.n.m., y ha sido de especial interés en la faena minera. La estructura fue expuesta debido a un deslizamiento planar en la unidad definida como Volcarenita, consistente en un plano de rumbo N-S de aproximadamente 160 metros de continuidad y manteos entre los 32 y 39°, inclinando

hacia el este. A lo largo de la estructura, se observa la presencia de rellenos blandos con espesores de 15 a 50 centímetros (figura 4.7), compuesto principalmente por limonitas y clorita, además de arcillas. Es necesario determinar la continuidad de la estructura C en faena, ya que se observan planos de discontinuidades subparalelos a la estructura principal, demarcando una zona de posibles deslizamientos planares.

Figura 4.7. Plano de la estructura mayor de primer orden C en banco del nivel 1150 m.s.n.m., en donde la elipse de color rojo señala la zona de rellenos blandos.

La estructura D se observa en 5 sectores de Cantera Normal, la cual corresponde a una estructura subvertical de rumbo WNW – ESE y continuidad de 140 metros, asociada a dique de guijarros, similar a la estructura C ya descrita. La estructura se observa a partir del nivel 1140 m.s.n.m., en donde más de la mitad del macizo rocoso aparece descompuesto, denotando una zona de daño de 24,7 metros. Se identifica una alteración moderada a intensa a clorita y óxidos de hierro, una alteración moderada a arcillas, y una presencia abundante de vetillas de yeso. La estructura disminuye su espesor en el nivel 1125 m.s.n.m., hasta los 4 metros de zona de daño, mientras que en el banco 1115 m.s.n.m. se observan 7 metros de macizo rocoso afectado por la estructura, destacando la presencia


de cristales de yeso bien desarrollados. En el nivel 1105 m.s.n.m., se exhibe la continuidad de la estructura subvertical, con un espesor de 20 metros de roca intensamente fracturada, mientras que en el banco 1095 m.s.n.m. se presentan 13 metros de zona de daño; con relleno de arcillas, óxidos e hidróxidos de hierro (hematita y goetita) y óxidos de manganeso, en este último par de niveles mencionados.

La estructura E posee su mejor representación en el banco 1070 m.s.n.m., la cual corresponde a una falla de contacto entre las unidades Lutita Fisible y Caliza Superior. Hacia el oriente de la estructura, se presenta la unidad Lutita Fisible, mientras que hacia el oeste de la misma, se exhibe la unidad Caliza Superior. La estructura oblitera el macizo rocoso, presentando una zona de daño de 1 metro, con relleno de arcillas y limonitas, además de abundantes vetas y vetillas de yeso. Esta última característica es de importancia en la faena, ya que los sectores aledaños a la estructura, suelen tener un enriquecimiento en sulfato, lo que demarca un punto límite en la calidad de las calizas a extraer, calificando como estéril aquellas calizas que poseen porcentajes mayores al 0,3% de sulfato. La estructura posee un rumbo NE – SW y continuidad de 350 metros aproximadamente, con actitud concordante a los estratos, y manteo de 34° en promedio hacia el sureste.

Por último, la estructura F corresponde a una estructura subvertical con rumbo NW – SE, y una continuidad de 120 metros, observándose en los niveles 1080 y 1070 m.s.n.m. La estructura se encuentra asociada a la intrusión de dique de guijarros pardo verdoso, con zona de daño de hasta 8 metros y matriz de escasa competencia compuesta por arcillas, y óxidos e hidróxidos de hierro (principalmente hematita, y en menor proporción goetita).

4.2.2. Estructuras mayores de segundo orden

Se reconocen 6 estructuras con trazas inferiores a los 100 metros de continuidad, y mayores a la altura de 2 bancos de diseño (20 metros). Las estructuras se califican según su disposición de oeste a este con las letras V, W, X, Y y Z respectivamente, las cuales se pueden observar en la figura 4.8.

Figura 4.8. Se representan las trazas de las estructuras mayores de segundo orden reconocidas en Cantera Normal, además de la nomenclatura seleccionada.

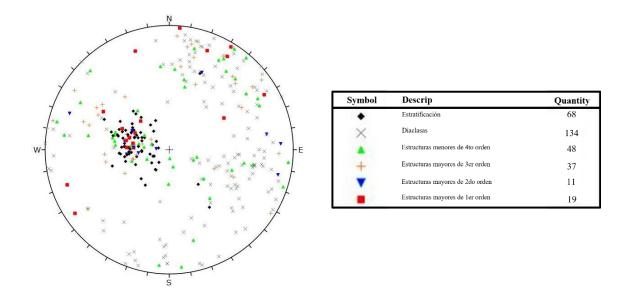
La estructura U se observa en el sector occidental de la faena a lo largo del talud entre los niveles 1160 y 1165 m.s.n.m. (figura 4.9), con rumbo NW – SE y una continuidad de casi 60 metros. La discontinuidad demarca el límite entre las unidades Caliza Inferior y Volcarenita, presentando una zona de daño de hasta 1 metro con relleno de arcillas, óxidos de hierro y una alteración clorítica intensa.

Figura 4.9. Vista hacia el E, desde el banco 1160 m.s.n.m., de la estructura mayor de segundo orden U, encerrada en elipse de color rojo.

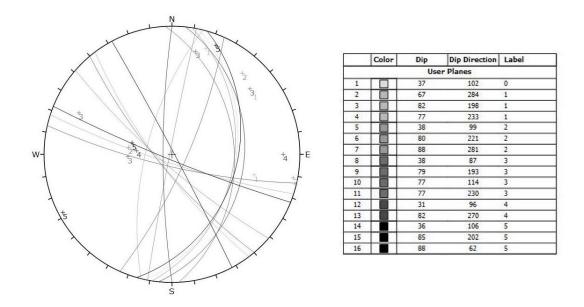
La estructura V se observa en el talud entre los bancos 1165 a 1160 m.s.n.m., exhibido como un plano similar al descrito en la estructura C. La estructura V posee un rumbo NNW – SSE con continuidad de 55 metros y se encuentra asociada a la unidad Volcarenita. El plano de la estructura se observa con una rugosidad planar lisa a rugosa, con relleno de arcillas, óxidos de hierro y manganeso.

La estructura W se presenta en el sector norte del talud entre los niveles 1160 a 1150 m.s.n.m., con un rumbo NNE – SSW y una continuidad de 43 metros. La discontinuidad se encuentra asociada a un deslizamiento planar ocurrido en la unidad Volcarenita, por lo que se presenta el plano como talud del banco. Dicho plano posee un manteo de 32° inclinando hacia el este, con salbanda de falla de hasta 50 centímetros, con relleno alterado intensamente a clorita y limonitas.

La estructura X, surge como una ramificación de la estructura B observada en el nivel 1135 m.s.n.m., con continuidad de 90 metros. La estructura subvertical se encuentra asociada a dique de guijarros, representando una zona de daño de 3,5 metros, con relleno de óxidos e hidróxidos de hierro, y arcillas. En el nivel 1125 m.s.n.m., la estructura presenta un espesor de 7 metros con relleno de hematita, goetita y arcillas blancas. Por último, la estructura se observa en el nivel 1115 m.s.n.m., con un espesor reducido de 2 metros, continuando con las características ya descritas.


La estructura Y se observa en el talud del banco 1105 m.s.n.m., con rumbo NNE – SSW y continuidad de 69 metros a lo largo del nivel. La estructura es paralela al talud con manteos de 82° en promedio e inclinando hacia el ENE y WSW, con un relleno característico de arcillas blancas y espesor no observable.

Por último, la estructura Z es observada en el nivel 1095 m.s.n.m., posee un rumbo NNE – SSW con continuidad de 64 metros, e inclinación entre los 12 y 40° hacia el este. La estructura se encuentra asociada a zona de alteración ferruginosa, con relleno de limonitas (principalmente hematita), y arcillas, además de vetillas de calcita; fragmentando el macizo rocoso de forma brechosa.


4.3. Propiedades de las discontinuidades

4.3.1. Orientación de las discontinuidades

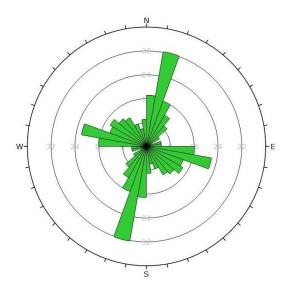

Mediante concentración de polos en proyecciones estereográficas se analizan los 324 datos estructurales (figura 4.10) medidos a lo largo de la faena. Se obtienen a través de las mayores concentraciones de polos de las estructuras menores y mayores (primer, segundo y tercer orden), un total de 16 planos principales (figura 4.11). Además, se presenta el diagrama de rosetas simple de las discontinuidades (figura 4.12), observándose dos orientaciones principales; de rumbos NNE – SSW y WNW – ESE.

Figura 4.10. Estereograma con los polos de las discontinuidades medidas en Cantera Normal. Se representan los polos de las estratificaciones, diaclasas, estructuras menores de cuarto orden; y estructuras mayores de tercer, segundo y primer orden.

Figura 4.11. Proyección estereográfica con los polos y planos principales de estratificaciones, diaclasas, fallas menores, estructuras mayores de tercer orden, estructuras mayores de segundo orden y estructuras mayores de primer orden, con las etiquetas de 0, 1, 2, 3, 4, y 5 respectivamente.

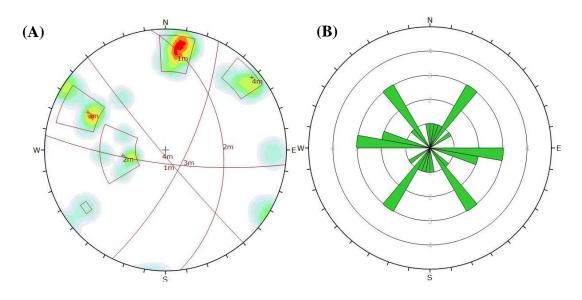


Figura 4.12. Diagrama de roseta simple de las 324 discontinuidades reconocidas en Cantera Normal.

4.3.1.1. Estructuras mayores

4.3.1.1.1. Trazas de fallas mayores

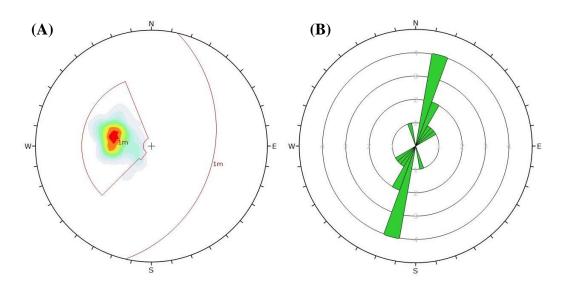

Se reconocen un total de 21 trazas de fallas definidas como estructuras mayores. Dichas estructuras son analizadas a través de proyecciones estereográficas, reconociéndose 3 orientaciones preferenciales mediante diagrama de roseta simple (figura 4.13B) y 4 planos principales preferenciales (tabla N°7, Anexo) a través de las concentraciones de polos de las estructuras (figura 4.13A).

Figura 4.13. Proyección estereográfica (a) y diagramas de roseta (b) de las 21 fallas mayores reconocidas en Cantera Normal.

4.3.1.1.2. Estratificaciones

Se registraron un total de 68 planos de estratificación identificados en distintos sectores a lo largo de la faena, reconociéndose mediante un análisis de clúster del *software* Dips 7.0 una orientación preferencial de rumbo NNE – SSW (figura 4.14B), con una dirección de inclinación de 102° y un manteo de 32° (figura 4.14A).

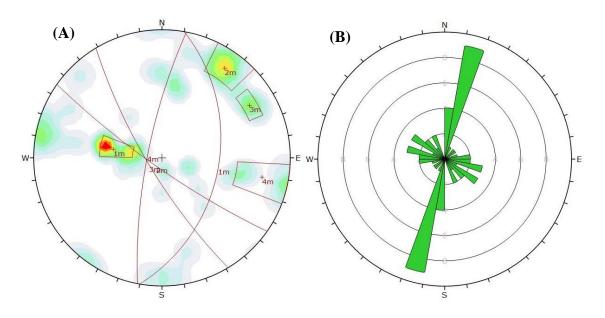


Figura 4.14. Proyección estereográfica con concentración de polos de estratificaciones de Cantera Normal (A), y diagrama de rosetas simple visualizando la orientación preferencial del rumbo NNE – SSW (B).

4.3.1.2. Estructuras menores

4.3.1.2.1. Trazas de fallas menores

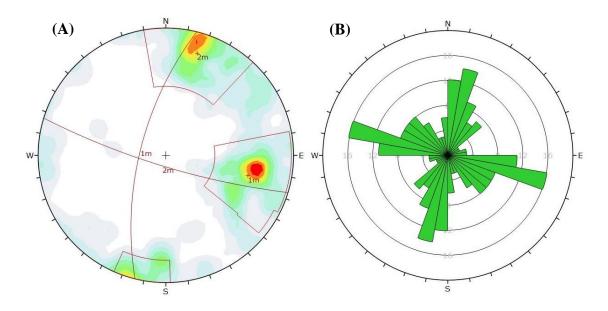

Se identificaron 48 trazas de fallas menores en Cantera Normal, siendo analizadas sus orientaciones mediante sus concentraciones de polos (figura 4.15A) y diagrama de roseta (figura 4.15B); identificando 4 orientaciones principales, con datos de dirección de inclinación y manteo correspondientes a 99/38, 218/80, 233/77 y 281/88 respectivamente (medidas en notación de "círculo completo").

Figura 4.15. Diagramas de concentración de polos (A) y de roseta (B) de trazas de fallas menores identificadas en la faena.

4.3.1.2.2. Diaclasas

A lo largo de la faena se registraron 134 datos estructurales de sets de diaclasas en el macizo rocoso, las cuales fueron analizadas mediante proyección estereográfica. Se identifican 2 sets de orientaciones preferenciales, correspondientes a 284/67 y 198/82 (figura 4.16).

Figura 4.16. Proyección estereográfica de las discontinuidades de diaclasas medidas a lo largo de Cantera Normal.

4.3.2. Espaciamiento de las discontinuidades

El espaciado de las discontinuidades en Cantera Normal se refleja en la tabla 8.14 (Anexo C), separando la información según cada unidad geológica. Se observa en general un predominio de 20 a 60 cm de espaciado entre discontinuidades, destacándose que en la unidad Caliza Superior existe la mayor cantidad de espaciados menores (<20 cm).

4.3.3. Persistencia de las discontinuidades

Se analiza la continuidad o persistencia por unidad geológica, reflejando la información en la tabla 8.15 (Anexo C) mediante gráficos circulares. Se observa en los gráficos un dominio de continuidades muy bajas a bajas, según las clasificaciones de la ISRM (1981). Esto se justifica con la cantidad predominante de datos de discontinuidades menores, tales como diaclasas, las que poseen en general una menor continuidad. Cabe destacar que la continuidad corresponde a uno de los parámetros más complejos de determinar con exactitud, destacándose que pueden existir persistencias mayores a las observadas en terreno; especialmente para las discontinuidades singulares, tales como las estructuras mayores. Por ende, se expone de forma independiente la continuidad de las estratificaciones medidas en faena (figura 4.17), con tal de contrastar que existen

persistencias medias a muy altas asociadas a los planos de estratificación en el macizo rocoso.

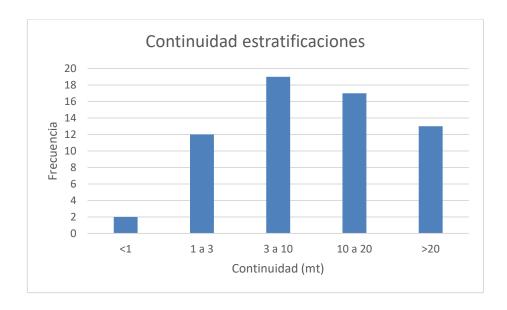
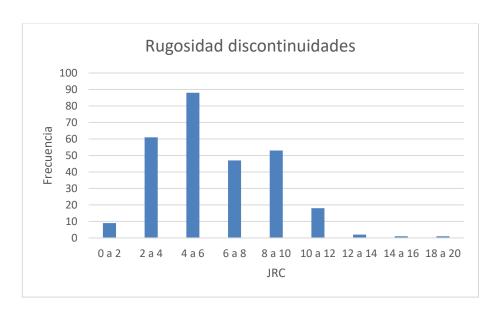



Figura 4.17. Continuidad de las estratificaciones medidas en Cantera Normal.

4.3.4. Rugosidad de las discontinuidades

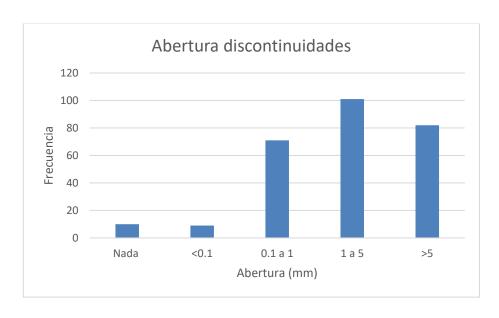

Respecto a las rugosidades de las discontinuidades en faena, se analizan primeramente en conjunto mediante un gráfico de columnas (figura 4.18), con tal de tener una visión general del comportamiento de las rugosidades de las discontinuidades. Posteriormente se agrupan los datos según cada unidad geológica, mediante gráficos de torta (tabla 8.16, Anexo C). Se logra identificar un predominio general de valores bajos a intermedios de JRC (*Joint roughness coefficient*), identificando un intervalo de 4 a 6 como el valor preponderante.

Figura 4.18. Rugosidad de las discontinuidades medidas en Cantera Normal, según el coeficiente de rugosidad (JRC).

4.3.5. Abertura de las discontinuidades

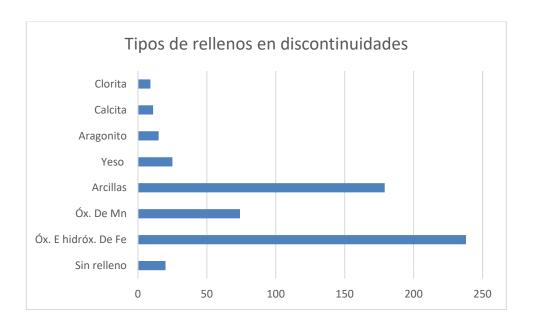

Para el caso de la apertura de las discontinuidades, se aplica el mismo concepto expuesto en la rugosidad. Primeramente, se presenta un gráfico de columnas agrupadas de la abertura de las discontinuidades medidas en faena (figura 4.19), con tal de observar la frecuencia de las mismas. Se distingue una baja ocurrencia de discontinuidades cerradas con aperturas inferiores a los 0,1 mm, existiendo un predominio de aberturas de 1 a 5 mm. Además, se añaden los gráficos de torta de las aperturas por cada unidad geológica (tabla 8.17, Anexo C), observándose que las mayores aberturas están asociadas a las unidades Caliza Inferior y Volcarenita. Cabe destacar que estas últimas unidades no poseen una gran densidad de datos, a diferencia de la unidad Caliza Superior, por lo cual se considera que esta última unidad también posee una abundante frecuencia de discontinuidades abiertas.

Figura 4.19. Gráfico de columnas de la apertura (mm) de las discontinuidades medidas en Cantera Normal.

4.3.6. Relleno de las discontinuidades

Respecto al tipo de relleno, se agrupan según las distintas unidades geológicas presentes en Cantera Normal, mediante gráficos circulares (tabla 8.18, Anexo C). En general se exhiben rellenos de óxidos de hierro, arcillas y óxidos de manganeso (figura 4.20). Además, se observa que, en las unidades superiores, tales como las unidades Lutita Fisible y Caliza Superior, se presenta yeso asociado al tipo de relleno. Así mismo, para las unidades inferiores (Volcarenita y Caliza Inferior), se distingue clorita rellenando las discontinuidades.

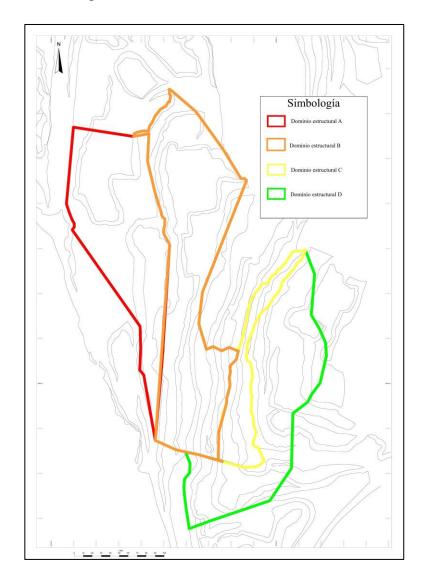
Figura 4.20. Gráfico de columnas con los tipos de rellenos observados en las discontinuidades presentes en Cantera Normal.

4.3.7. Meteorización del macizo rocoso

Por último, respecto a los grados de meteorización exhibidos en faena, se refleja la información según cada unidad geológica a través de gráficos de torta (tabla 8.19, Anexo C). Según lo observado en terreno, principalmente se exhibe una decoloración sobre las superficies de las discontinuidades, reflejado como un grado de meteorización de II según la evaluación del grado de meteorización del macizo, indicando una decoloración por la alteración del macizo rocoso y de las superficies de discontinuidades (ISRM, 1981). Los casos en que se evaluó el macizo con grados de III o superiores, están principalmente asociados a la presencia de estructuras, que facilitan la alteración del macizo rocoso.

4.4. Dominios estructurales

Para la definición de los dominios estructurales presentes en Cantera Normal, se considera como primer nivel de subdivisión el factor litológico, que condiciona el comportamiento de la roca según su resistencia al cizallamiento. Mediante el mapeo geológico escala 1:500, se definen rocas sedimentarias químicas y volcanosedimentarias en Cantera Normal, señalando el primer factor para definir los dominios estructurales de esta. Como segundo nivel de división, las trazas de estructuras principales suelen determinar límites entre cada dominio. A través del mapeo estructural escala 1:500 realizado, se distinguen


las trazas de las estructuras mayores de 1^{er} y 2^{do} orden; las que serán consideradas para realizar la separación entre los distintos dominios estructurales propuestos. Como tercer nivel de división, la orientación, largo y espaciamiento de las discontinuidades son determinantes para corroborar las similitudes o diferencias entre las características estructurales. Dentro de este nivel de división, el trabajo realizado en terreno permitió diferenciar los tipos de bloques identificados en Cantera Normal, lo que está condicionado por los parámetros de largo y espaciamiento. Por ende, el primer acercamiento hacia la definición de dominios estructurales, fue observado en terreno a través de la distinción en la tipología de bloques en los distintos niveles de la faena.

Según las características de tamaño y tipos de bloques, se identifican 3 tipologías a lo largo de la faena, exhibiendo características estructurales distintivas que permiten proponer 3 zonas con comportamientos estructurales distintos. Los tipos de bloques observados en cantera corresponden a: (i) bloques tabulares asociados a planos de fisibilidad, (ii) bloques equidimensionales a poliédricos, y (iii) bloques transicionales de tabulares a equidimensionales. Por esta razón se analiza la distribución de las tipologías de bloques en cada estación de mapeo, identificándose la correlación espacial entre aquellas distribuciones. En los bancos inferiores se distinguen bloques tabulares asociados a planos de fisibilidad, mientras que en los bancos superiores se observan bloques equidimensionales a poliédricos; además, de una zona transicional en las secciones intermedias (bancos 1090 a 1105).

La identificación de la persistencia de las estructuras mayores de segundo y primer orden, permiten señalar los límites entre los dominios estructurales a proponer. De tal forma, las trazas de las estructuras mayores de primer orden A, B, C, D y E (figura 4.5), y las trazas de las estructuras mayores de segundo orden Y y Z (figura 4.8), permiten subdividir 3 dominios estructurales basado en la distribución espacial de las tipologías de bloques identificadas en terreno. Además, según Hustrulid et al. (2001), un nivel de subdivisión fundamental para definir dominios estructurales corresponde a los límites litológicos, por lo que se propone añadir una subdivisión en los bancos superiores debido a la existencia de rocas volcanosedimentarias (volcarenita). Así, se proponen 4 zonas con comportamientos estructurales característicos, definidos a partir de la distribución

litológica, de la tipología de bloques presentes en el macizo rocoso, y de las trazas de las estructuras mayores de primer y segundo orden; obteniendo los dominios estructurales A, B, C y D, que se pueden observar en la figura 4.21, con los polígonos de color verde, amarillo, naranjo y rojo respectivamente.

A partir de las zonas delimitadas, se procede a corroborar las similitudes o diferencias respecto al comportamiento estructural, mediante el análisis de las orientaciones de las estructuras identificadas, el cual se realiza a través de proyecciones estereográficas y diagramas de rosetas simple.

Figura 4.21. Mapa de Cantera Normal con los polígonos de los dominios estructurales propuestos.

4.4.1. Dominio estructural A

Representado en los niveles inferiores de Cantera Normal, específicamente en el sector denominado Ventana. Litológicamente se distingue la unidad Caliza Superior, con tipos de bloques tabulares y planos de fisibilidad característicos. Se definen los límites del dominio, mediante las trazas de las estructuras mayores de primer orden D, E y F. Este dominio estructural es el que posee mayor densidad de información, conformando un total de 142 datos estructurales medidos. Se representa la orientación de las discontinuidades a través de estereogramas, graficando las estructuras menores, agrupadas en fallas menores y diaclasas; y estructuras mayores, conformadas por fallas mayores y estratificaciones. Las orientaciones preferenciales de las estructuras menores corresponden a dos (figura 4.22), el primer set posee un rumbo WNW – ESE, manteando hacia el SSW (205/85, con 31 polos); y el segundo set tiene rumbo NNE – SSW, con manteos hacia el WNW (287/65, con 27 polos). Con respecto a las estructuras mayores, también se exhiben 2 orientaciones preferenciales (figura 4.22), una muy dominante con rumbo NNE – SSW manteando hacia el ESE (105/35, con 34 polos) representada principalmente por los planos de estratificación y estructuras subparalelas a estas; y una orientación con menor densidad de información, asociada a fallas mayores subverticales, con rumbo E – W (185/79, con 5 polos).

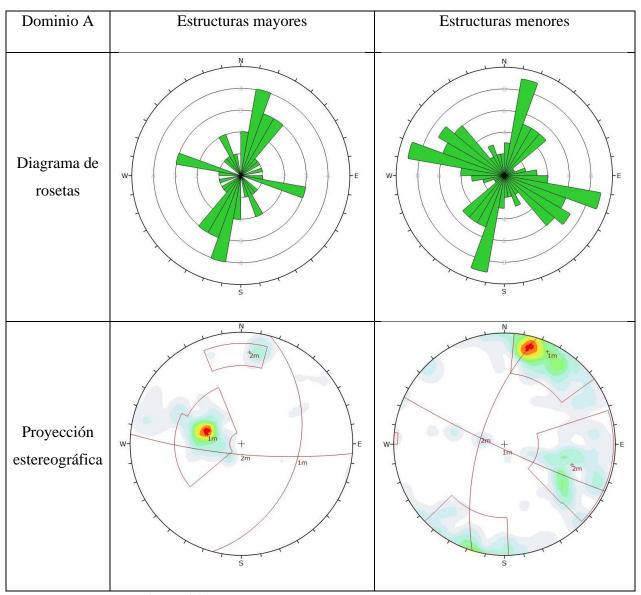


Figura 4.22. Diagramas de rosetas del dominio estructural A.

4.4.2. Dominio estructural B

Este dominio se ubica en los bancos superiores del sector Ventana, entre los bancos 1105 y 1090. El tipo de litología en el dominio corresponde a la unidad Caliza Superior, con tipos de bloques tabulares a equidimensionales, representando una transición entre ambas tipologías. Los límites de la zona definida, se demarcan por las trazas de las estructuras de segundo orden Y y Z; además del sector oriental de la estructura de primer orden D. Se midieron un total de 66 datos estructurales en la zona, representando la orientación de los mismos mediante diagramas de rosetas simple y diagramas de concentración de polos en

proyecciones estereográficas. Al igual que en el Dominio estructural A, se analizan diaclasas y fallas menores (estructuras menores), así como estratificaciones y fallas mayores (estructuras mayores). Con respecto a las estructuras menores, se identifican 3 sets preferenciales (figura 4.23); en donde el primer set presenta un rumbo WNW – ESE y actitud subvertical (194/86, con 11 polos), el segundo set posee un rumbo NNE – SSW, inclinando hacia el WNW (293/64, con 14 polos), y por último, el tercer set exhibe una actitud subvertical con rumbo NW – SE (255/82, con 7 polos). Luego, analizando las estructuras mayores se identifican 2 orientaciones preferenciales (figura 4.23), presentando ambas un rumbo NNE – SSW; una de ellas inclinando hacia el E (99/35, con 17 polos), asociada principalmente a planos de estratificación y fallas mayores subparalelas a estos, mientras que el segundo set es subvertical (98/88, con 7 polos), y representa exclusivamente fallas mayores.

Dominio B	Estructuras mayores	Estructuras menores
Diagrama de rosetas	W- S	N N S S S S S S S S S S S S S S S S S S

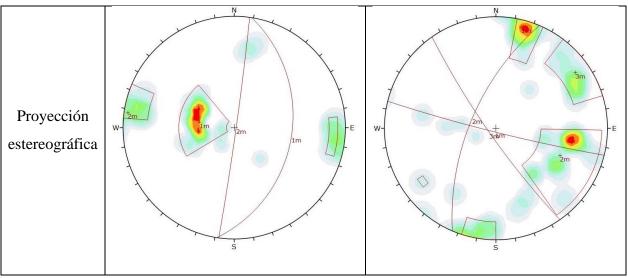


Figura 4.23. Diagramas de rosetas del dominio estructural B.

4.4.3. Dominio estructural C

Dominio ubicado en el sector Normal Superior, abarcando los bancos 1105 hasta el sector septentrional del nivel 1160. A diferencia de los dominios anteriores, el presente dominio posee una mayor variedad con respecto a las unidades litológicas representadas, identificándose las unidades Caliza Superior y Caliza Media; además de un sector dolomitizado al norte del banco 1135. Con respecto a los tipos de bloque en este dominio, se observan bloques desde equidimensionales a poliédricos. Se registraron 60 datos estructurales en la zona delimitada por las estructuras D (estructura mayor de 1^{er} orden) e Y (estructura mayor de 2^{do} orden), considerando además como límite de dominio un factor litológico, con la presencia de la Unidad Volcarenita. Con respecto al análisis estereográfico, las estructuras menores presentan 3 orientaciones preferenciales (figura 4.24); el primer set posee un rumbo ESE – WNW, inclinando hacia el S (190/64, con 9 polos), el segundo set exhibe un rumbo N – S, manteando hacia el W (278/75, con 13 polos), y se distingue un tercer set de rumbo E – W, inclinando hacia el N (360/74, con 6 polos). Igualmente, se realizó el análisis estereográfico de las estructuras mayores, observándose solo una orientación preferencial (figura 4.24), la cual posee un rumbo NNE - SSW, e inclina hacia el SSE (108/37, con 13 polos), representando planos de estratificación y fallas de escala métrica.

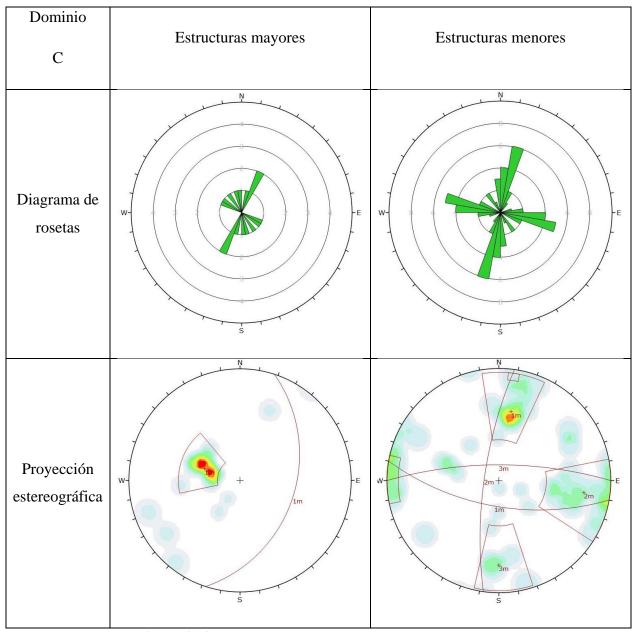
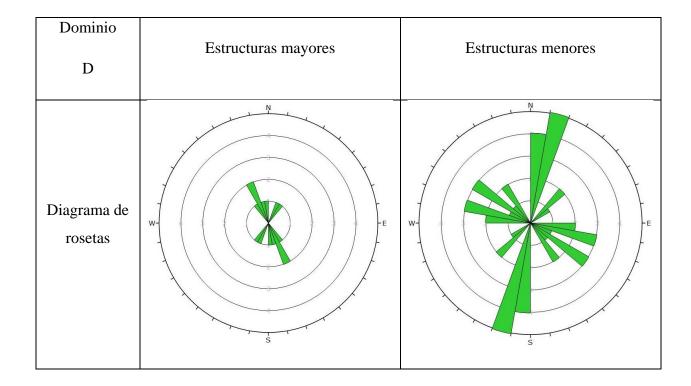



Figura 4.24. Diagramas de rosetas del dominio estructural C.

4.4.4. Dominio estructural D

Zona emplazada en los niveles superiores de Cantera Normal, específicamente en el sector poniente de la misma. Litológicamente, se presentan dos unidades, la unidad Caliza Inferior y la unidad Volcarenita, predominando esta última unidad. El tipo de bloques en este dominio es bastante similar al presente en el dominio estructural C, presentándose bloques equidimensionales a poliédricos. El dominio es delimitado por las estructuras mayores de primer orden A, B y C, midiéndose un total de 51 datos estructurales en el

sector. Mediante proyecciones estereográficas del *software* Dips 7.0, se analizan los conjuntos de estructuras mayores y menores, obteniéndose los diagramas de concentración de polos y de rosetas de ambos conjuntos de estructuras. Con respecto a las estructuras menores, se observan 2 sets preferenciales (figura 4.25); el primer set presenta un rumbo NW – SE, inclinando hacia el SW (207/75, con 10 polos), y el segundo set posee un rumbo NNE – SSW, manteando hacia el WNW (279/71, con 8 polos). El análisis estereográfico de las estructuras mayores señala 2 orientaciones preferenciales (figura 4.25); el set de mayor concentración presenta un rumbo N – S y mantea hacia el E (89/37, con 19 polos), mientras que el segundo set es subvertical y posee un rumbo NW – SE (238/83, con 3 polos). A pesar de la baja concentración de este último set, se considera relevante ya que representa la traza de una estructura mayor de primer orden (estructura B), y de una estructura mayor de 2^{do} orden subparalela a la estructura B.

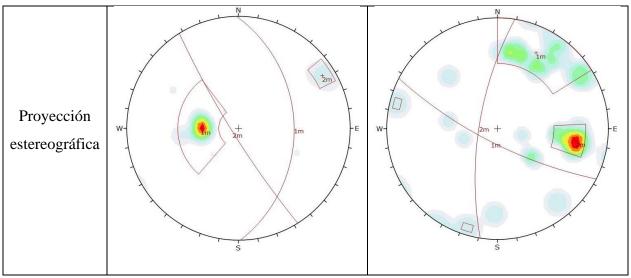
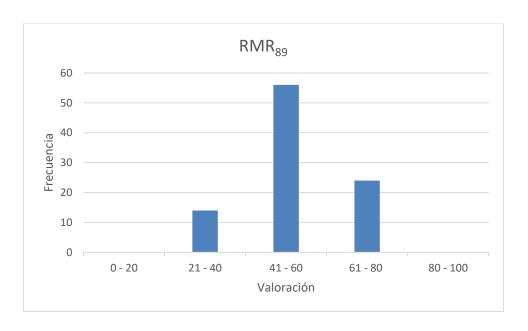
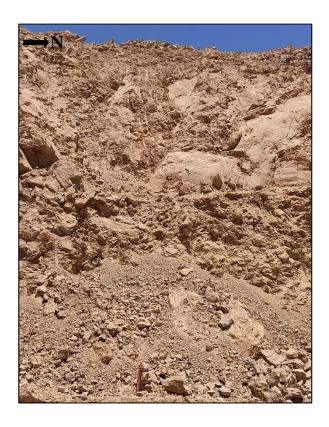


Figura 4.25. Diagramas de rosetas del dominio estructural D.


Cabe destacar que se proponía inicialmente, la separación de solo 3 dominios estructurales; sustentándose en las tipologías de bloques del macizo rocoso distinguidas en faena. Sin embargo, se decidió subdividir el dominio estructural ubicado en el sector occidental de Cantera Normal, ya que a lo largo del avance de producción se presentaron planos de debilidad subparalelos a la estratificación de la unidad Volcarenita, exhibiendo esta litología un comportamiento estructural característico para realizar la distinción entre los dominios estructurales C y D.

4.5. Propiedades Macizo Rocoso

Luego de determinar los distintos parámetros geotécnicos de las discontinuidades, así como la estimación de las propiedades del macizo rocoso; se procede a clasificar el macizo mediante el sistema RMR de Bieniawski (1989), y a través de la clasificación cualitativa GSI (*Geological Strength Index*) de Marinos y Hoek (2000).


4.5.1. Clasificación Macizo Rocoso

Mediante las 97 estaciones de mapeo geotécnico distribuidas a lo largo de la faena (figura 4.1), se calculó el RMR de Bieniawski (1989), obteniéndose intervalos de valores entre las calidades buena, media y mala (tabla 8.13, Anexo B). Se observa un predominio de calidad media (RMR₈₉ de 61 a 40) en el macizo rocoso de Cantera Normal (figura 4.26).

Figura 4.26. Valoración de RMR₈₉ obtenida mediante las 97 estaciones de mapeo distribuidas en Cantera Normal.

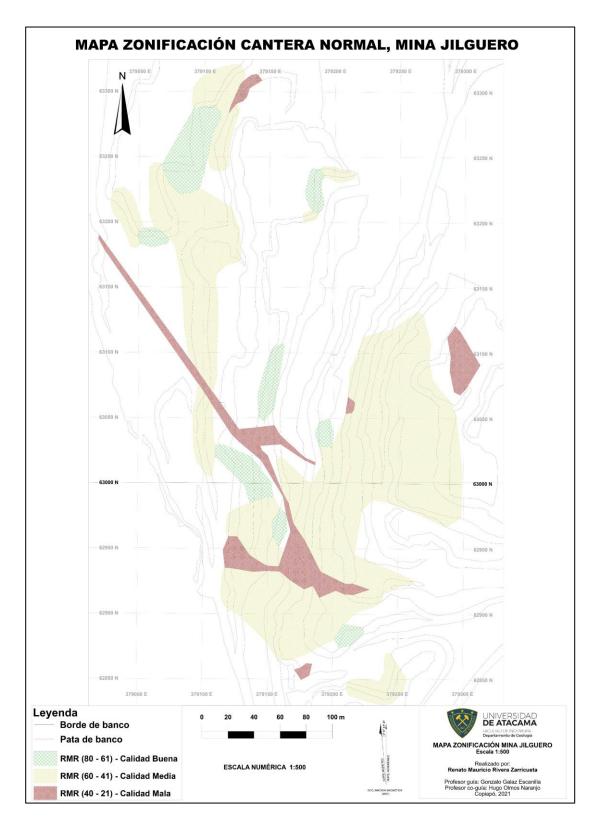
A través de las observaciones en terreno, se observan sectores de Cantera Normal afectados por diques de guijarros. Estas zonas de la faena se encuentran parcialmente descompuestas, con un macizo rocoso moderada a altamente meteorizado (ISRM, 1981). Debido a la mala calidad del macizo rocoso en estos sectores, se dificulta su clasificación mediante RMR₈₉, por lo que se caracterizó el macizo utilizando el *Geological Strength Index* (GSI) de Marinos y Hoek (2000), debido a la aplicación práctica de este índice al considerar el tipo de roca, estructura del macizo rocoso y condición de sus discontinuidades. Según lo observado en terreno, se distingue una estructura desintegrada y calidad de superficie muy pobre en estos cuerpos (figura 4.27) obteniéndose valores GSI de 15 a 17,5. A pesar de que la correlación entre RMR₈₉ y GSI expuesta (ecuación 2.3) no es válida para valores de RMR₈₉ inferiores a 25, se decide otorgar la valoración mínima de mala calidad (RMR=21) expuesta por la clasificación de Bieniawski (1989), debido a la importancia de recalcar la mala calidad del macizo rocoso asociado a estas estructuras.

Figura 4.27. Estación C69 ubicada en el banco 1135 m.s.n.m. con macizo rocoso afectado por dique de guijarro, destacándose su mala calidad geotécnica.

Además, se realizó la diferenciación por unidad geológica obteniéndose los valores máximos, mínimos y promedios del cálculo de RMR₈₉ (tabla 4.1).

Unidad geológica	RMR ₈₉ máximo	RMR ₈₉ mínimo	RMR ₈₉ promedio		
Caliza Superior	66	21	52		
Caliza Media	68	21	55		
Volcarenita	70	50	60		
Caliza Inferior	62	21	48		

Tabla 4.1. Cálculo de RMR₈₉ por unidad geológica.


De igual forma, se calculó la diferenciación de GSI (Marinos y Hoek, 2000) por unidad geológica, a través de las observaciones en terreno y la correlación entre RMR₈₉ y GSI (ecuación 2.3), obteniéndose los valores promedio, máximo y mínimo de este índice (tabla 4.2).

Unidad Geológica	GSI máximo	GSI mínimo	GSI promedio		
Caliza Superior	61	15	47		
Caliza Media	63	15	50		
Volcarenita	65	45	55		
Caliza Inferior	57	15	42		

Tabla 4.2. Valores máximos, mínimos, y promedios de GSI por unidad geológica obtenidos en Cantera Normal.

4.5.2. Zonificación Macizo Rocoso

A partir de las valoraciones de RMR₈₉ obtenidas en superficie de Cantera Normal, se realizó la zonificación de las calidades geotécnicas del macizo rocoso, definiéndose 3 calidades en Cantera Normal (figura 4.28).

Figura 4.28. Mapa con vista en planta de Cantera Normal, con las zonificaciones de la valoración de RMR_{89} en superficie.

Se destacan zonas de buena calidad geotécnica (figura 4.29) con valores de RMR₈₉ de hasta 73 y 70, y con GSI de 68 y 65; ligadas a las unidades Caliza Media y Volcarenita respectivamente. Además, estas zonas de buena calidad (RMR₈₉ entre 61 a 80), se ubican principalmente en asociación a los dominios estructurales C y D, representados con tipologías de bloques equidimensionales a poliédricos.

Figura 4.29. Estación C85 en que se observa una buena calidad geotécnica del macizo rocoso.

Desde la otra arista, las zonas de mala calidad (RMR₈₉ de 21 a 40) se relacionan a sectores afectados por estructuras (figura 4.30), entre las que se destaca la presencia de diques de guijarros, así como zonas con estructuras brechosas y alteración ferruginosa de moderada a intensa.

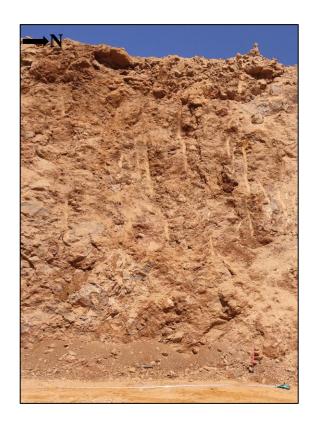


Figura 4.30. Estación C88 en que se observa una mala calidad geotécnica del macizo rocoso.

Por último, la principal cobertura determinada corresponde a una calidad media del macizo rocoso (figura 4.31), con valoraciones de RMR₈₉ entre 41 a 60, obteniéndose un valor promedio de 53 según la clasificación de Bieniawski (1989) para Cantera Normal.

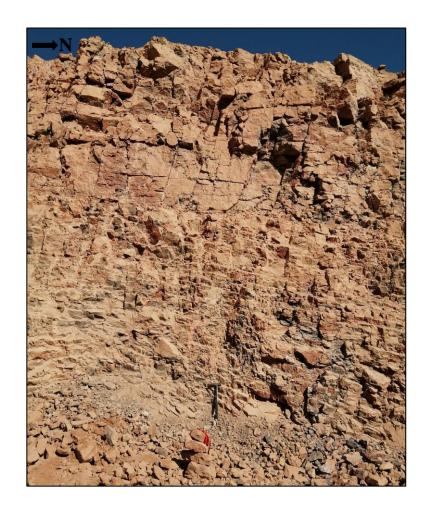
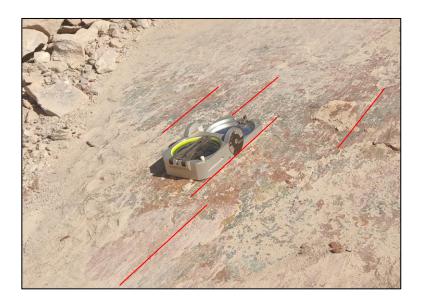
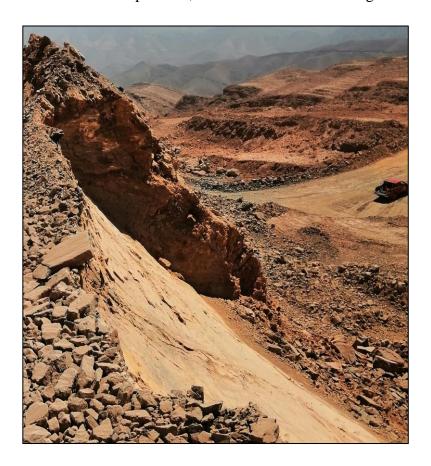


Figura 4.31. Estación C10 en que se observa una calidad geotécnica media del macizo rocoso.

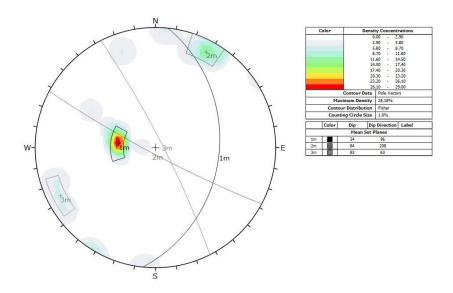

CAPÍTULO V

5. DISCUSIÓN

5.1. Geología estructural


A partir de los 324 datos estructurales recopilados en terreno, se identifican las orientaciones preferenciales de estructuras mayores y menores. Entre las estructuras menores, se reconocen 2 sets preferenciales de los sistemas de diaclasas, con rumbos NNE – SSW y WNW – ESE, exhibiendo un diaclasado típico para una roca sedimentaria dispuesta en estratos (Ramírez y Alejano, 2004). Con respecto a las trazas de fallas menores, estas presentan orientaciones NW – SE y NNE – SSW, asociadas a estructuras secundarias de diques de guijarros y estructuras intercapa.

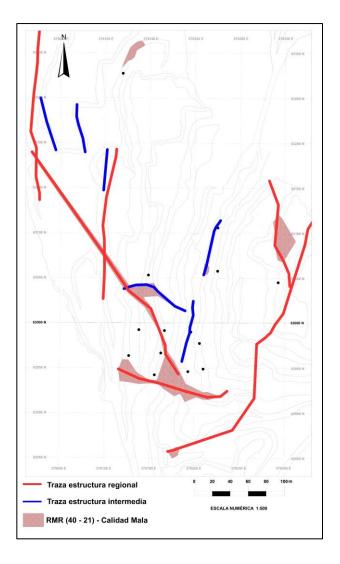
Con respecto a los planos de estratificación, los datos estructurales exhiben una orientación preferencial de rumbo NNW – SSE, con buzamientos desde los 10° hasta los 60°, caracterizando una serie monoclinal con vergencia oeste. Además, se observaron en distintos sectores de la faena, estrías perpendiculares al rumbo de los planos de estratificación, como el presentado en la figura 5.1.


Figura 5.1. Plano con estrías (líneas de color rojo), perpendiculares al rumbo NNW – SSE de la estratificación con dato estructural de la estría equivalente a 196/89L.

Estas estructuras son interpretadas como *flexural slips* (deslizamientos flexurales), en donde el espesor de las capas se mantiene constante, concordando con lo presentado por Tapia (2017). Por tanto, estos deslizamientos entre capas a lo largo de los planos de estratificación, son los responsables de la ocurrencia de los deslizamientos planares observados en la faena, especialmente asociados al dominio estructural D, con la unidad geológica Volcarenita. Además, la característica fisibilidad observada en la unidad Caliza Superior, se asocia también a deslizamientos flexurales, provocando especial cuidado en la ocurrencia de deslizamientos planares, como el observado en la figura 5.2.

Figura 5.2. Plano de estratificación fisible de la unidad Caliza Superior deslizado en el nivel 1105 m.s.n.m.

Con respecto a las estructuras mayores de primer y segundo orden, se agrupan los datos estructurales obtenidos a través de un diagrama de proyección estereográfica para su mejor comprensión (figura 5.3).


Figura 5.3. Diagrama de proyección estereográfica, en donde se presentan los planos principales de las estructuras mayores de primer y segundo orden.

Se distinguen 3 planos principales, con orientaciones preferenciales NW – SE y N - S. Las estructuras con orientación NW – SE, como lo representa la estructura mayor de primer orden B, se encuentran asociadas a las fallas de desgarre dextrales descritas por Garay (1994), lo que es corroborado con mediciones estructurales de estrías con *rake* ~25°, lo cual indica un predominio en la componente transcurrente (Niemeyer, 1999). Las estructuras de rumbo N – S son asociadas a la configuración regional propia de la cuenca de Chañarcillo, siendo atribuidas al desplazamiento del despegue Cerrillos, el cual presenta una dirección general NNE – SSW y vergencia oeste, representando una falla de acomodación durante el crecimiento del Anticlinorio de Tierra Amarilla (Martínez et al., 2013).

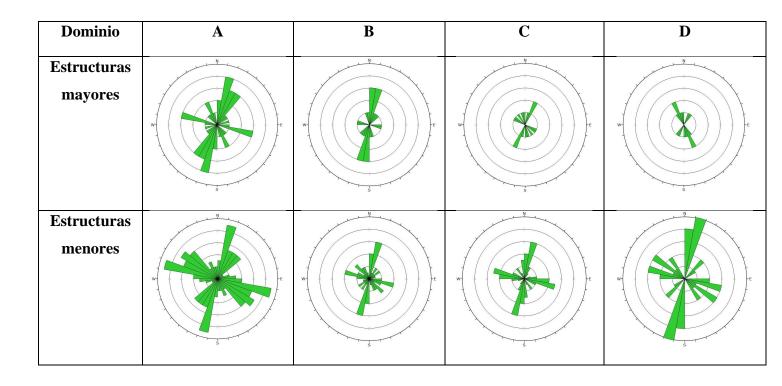
5.2. Propiedades de las discontinuidades

Se cuestiona la observación de estratificaciones con continuidades menores a los 3 metros en Cantera Normal. Para un mejor análisis de dicha información, se presenta la figura 5.4,

en donde se incluyen las trazas de las estructuras principales, así como las zonas con mala calidad geotécnica del macizo rocoso. Se distingue una relación espacial entre las bajas persistencias de las estratificaciones, las que están siendo afectadas por estructuras circundantes, así como por sectores con una mala calidad geotécnica, lo que es interpretado como zonas de daño producidas por las estructuras, conformando un macizo rocoso con un mayor grado de fracturamiento; demostrando que la influencia de estructuras principales condiciona el comportamiento del macizo rocoso.

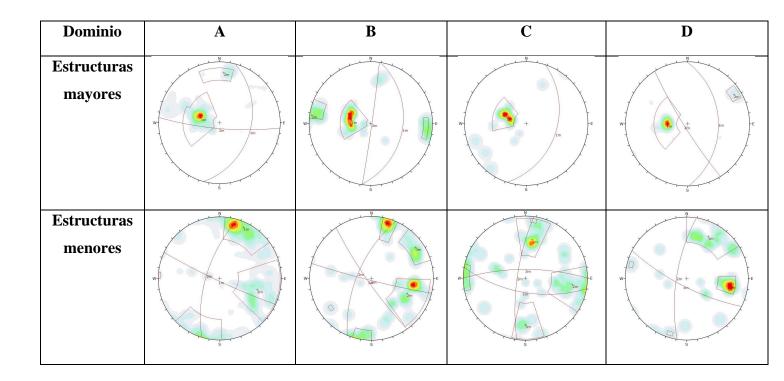
Figura 5.4. Se refleja la relación espacial entre los sectores con estratificaciones de bajas persistencias (puntos de color negro), con respecto a las trazas de estructuras principales y sectores de mala calidad geotécnica del macizo rocoso.

En general, las discontinuidades de Cantera Normal reflejan rugosidades bajas (JRC de 4 a 6), con aberturas de 1 a 5 mm y rellenos blandos; típicamente rellenas por limonitas. En las unidades geológicas superiores, se destaca la presencia de yeso, el cual es característico de la unidad Lutita Fisible, así como de la unidad Caliza Superior; destacándose la presencia de cristales centimétricos de yeso en el contacto por falla presente entre ambas unidades. Con respecto a la unidad geológica Volcarenita, se distingue la presencia de clorita rellenando sus discontinuidades, ligado a vetillas blandas y salbandas de falla. Estas características correspondientes a bajas rugosidades, aberturas considerables y rellenos blandos de las discontinuidades; además de, espaciamientos de 20 a 60 centímetros entre discontinuidades, expresan condiciones que, según González de Vallejo et al. (2004), el comportamiento del macizo rocoso será controlado por los planos de debilidades que presenta, es decir, las discontinuidades del macizo rocoso condicionan el comportamiento geomecánico de las unidades de roca presentes en Cantera Normal.


5.3. Dominios estructurales

La definición de dominios estructurales se basó principalmente en las características litológicas y de alteración existentes, del análisis de las trazas de las estructuras principales, y de las orientaciones de las discontinuidades (Hustrulid et al., 2001); así como de la continuidad y espaciamiento de las mismas, ya que condicionan la tipología de bloques presentes en la faena (Wyllie y Mah, 2004).

A partir del trabajo realizado en terreno, se distinguían 3 sectores con comportamientos estructurales distintivos según de la tipología de bloques observados; estos eran: (i) bloques tabulares asociados a planos de fisibilidad, (ii) bloques equidimensionales a poliédricos, y (iii) bloques transicionales de tabulares a equidimensionales. Sin embargo, la unidad volcanosedimentaria definida como Volcarenita, presentó deslizamientos planares a lo largo del avance de producción de la faena, demostrando un comportamiento distintivo que requería distinción. Por tanto, el factor litológico define la separación de los 4 dominios estructurales propuestos; a pesar de que en realidad el factor determinante es representado por las características de las discontinuidades asociadas a la unidad Volcarenita. Estas características, son principalmente la orientación, el tipo de relleno y


la rugosidad de las discontinuidades. Las orientaciones en cuestión, son atribuidas a planos subparalelos a la estratificación, exhibiendo rugosidades mayoritariamente suaves (JRC de 4 a 6 principalmente), y rellenos de escasa competencia, representados por zonas de rellenos friables y vetillas blandas. Estos rellenos se diferencian respecto a los observados en los otros sectores de la faena, debido a la presencia de clorita; condicionando la ocurrencia de deslizamientos planares a lo largo de estas discontinuidades de rumbo N – S y manteos hacia el E de 37° en promedio.

A partir de los análisis mediante diagramas de rosetas simple (figura 5.5), se distinguen en los distintos dominios dos orientaciones preferenciales de rumbo NNE – SSW y WNW – ESE, tanto en las estructuras mayores, como menores. Se destaca una tercera orientación de rumbo NNW – SSE, que se observa distintivamente en las estructuras mayores del dominio estructural A, D y en menor proporción en C; lo cual se encuentra probablemente asociado a la estructura mayor dextral de rumbo NW-SE.

Figura 5.5. Diagramas de roseta simple de estructuras mayores y menores de los dominios estructurales A, B, C y D.

Ya que los diagramas de rosetas solo permiten visualizar las direcciones de rumbos preferenciales, se incluyen también los diagramas de proyección estereográfica de cada dominio (figura 5.6). Al comparar estos diagramas se recalcan las diferencias en las orientaciones de las discontinuidades entre cada dominio. Se distinguen los planos de estratificación, así como discontinuidades subparalelas a estos, en los dominios A, B y C con rumbo NNE – SSW; mientras que en el Dominio D, se diferencian con un rumbo N – S. Con respecto a las estructuras mayores subverticales, se observan en los dominios A, B y D, las cuales presentan rumbos E – W, NNE – SSW y NE – SW respectivamente; denotando las distinciones en los comportamientos de las estructuras mayores en cada dominio estructural. Con respecto a las estructuras menores, estas representan principalmente las familias de diaclasas existentes en el macizo rocoso; y en menor medida, trazas de fallas menores subparalelas al diaclasado. En los dominios estructurales A y D, se distinguen 2 sets preferenciales bastante similares, mientras que los dominios B y C, se diferencian con 3 sets preferenciales. En el dominio estructural B se añade un set de orientación NW – SE, mientras que el dominio C dista de los dominios estructurales ya descritos, con 2 sets subverticales de orientación E - W, además de un set de orientación N – S, igualmente subvertical. Es decir, a través de los análisis mediante diagramas de rosetas simple, y diagramas de proyección estereográfica, se observan características distintivas en las orientaciones de las discontinuidades que aseveran la diferenciación entre cada dominio estructural.

Figura 5.6. Diagramas de proyección estereográfica con los planos principales distinguidos a partir de la concentración de polos de estructuras mayores y menores, de los dominios estructurales A, B, C y D.

Por último, cabe destacar la importancia en el control regular de las estructuras mayores presentes en la faena, ya que gran parte de las estructuras identificas en los distintos dominios estructurales presentan buzamientos hacia el E con manteos superiores a los 30° e inferiores a los 60°, asociados a planos de estratificación y discontinuidades subparalelas a estos. Estas estructuras son las más críticas en el diseño de taludes (Hustrulid et al., 2001), y en el caso que se presenten buzando hacia el frente del talud favorece la existencia de planos de rotura y deslizamientos (González de Vallejo et al., 2004), como los ocurridos en el nivel 1150 m.s.n.m. asociados al dominio estructural D.

5.4. Propiedades Macizo Rocoso

5.4.1. Clasificación Macizo Rocoso

El análisis de las tablas 4.1 y 4.2 permiten observar diferencias entre las unidades de roca de Cantera Normal. De esta forma, se distingue principalmente una valoración media según RMR₈₉ (Tabla 4, Anexo), y GSI de 42 a 55 en promedio, generalmente representado por una estructura fracturada a muy fracturada del macizo rocoso y calidades de superficie regulares (Marinos y Hoek, 2004) en las unidades de roca. También, se refleja que la unidad Volcarenita es la que presenta una mejor valoración máxima y promedio, otorgándole valores de 70 y 60 respectivamente según RMR₈₉, lo cual se asocia a su tipología de bloques (equidimensionales a poliédricos), menor grado de meteorización (generalmente solo con superficies decoloradas por alteración) y a una mejor resistencia a la compresión simple, con RCS de 100 a 250 MPa (Tabla 8.6, Anexo B), lo cual se contrasta con la presencia de rellenos blandos y bajas rugosidades en sus discontinuidades. Respecto a las unidades calcáreas, estas poseen valoraciones similares en su calidad geotécnica; sin embargo, la unidad Caliza Inferior posee la menor valoración, asociado a la baja densidad de información, y mayor influencia por tanto la presencia de la estructura mayor de primer orden B. Luego la unidad Caliza Superior posee el segundo puesto en menores valoraciones promedio, lo que se asocia a la mayor cantidad de discontinuidades por la presencia de bloques tabulares (menores espaciamientos) asociados a planos de fisibilidad. Por último, cabe destacar la presencia de estructuras mayores de 1^{er} y 2^{do} orden afectando las unidades, lo cual se ve reflejado en las menores valoraciones de las unidades Caliza Superior e Inferior.

Por otro lado, se propone analizar la influencia de los diques de guijarro en las unidades de roca, ya que los menores valores obtenidos de RMR₈₉ y GSI se asocian a áreas puntuales en que la cantera es afectada por estas estructuras subverticales. Se propone por tanto, calcular valores modificados de RMR₈₉ y GSI por unidad geológica, sin considerar los sectores asociados a la presencia de diques de guijarros, con tal de observar una mejor diferenciación entre cada una de las unidades geológicas. Estos cálculos se pueden observar en la tabla 5.1 para las valoraciones de RMR₈₉, mientras que en la tabla 5.2 se presentan los valores de GSI.

Unidad Geológica	RMR ₈₉ máximo	RMR ₈₉ mínimo	RMR ₈₉ promedio		
Caliza Superior	66	30	55		
Caliza Media	68	30	57		
Volcarenita	70	50	60		
Caliza Inferior	62	50.5	56		

Tabla 5.1. Valoraciones modificadas de RMR₈₉ máximo, mínimo y promedio por unidad geológica.

Unidad Geológica	GSI máximo	GSI mínimo	GSI promedio		
Caliza Superior	61	25	50		
Caliza Media	63	25	52		
Volcarenita	65	45	55		
Caliza Inferior	57	45.5	51		

Tabla 5.2. Valoraciones modificadas de GSI máximo, mínimo y promedio por unidad geológica.

Entonces, mediante este análisis se busca comparar respecto a las tablas 4.1 y 4.2, la influencia de las estructuras mayores de 1^{er} y 2^{do} orden en las valoraciones geotécnicas, a través de las zonas de daño del macizo rocoso asociadas a las estructuras tabulares de diques de guijarros. Al comparar, se exhibe un aumento considerable en los valores obtenidos de RMR₈₉ y GSI (tablas 4.1 y 4.2), para las unidades Caliza Inferior y Superior. Esta última unidad, es la que posee una mayor cantidad de información recolectada desde terreno, y es por tanto, la mejor representación de la influencia en las valoraciones geotécnicas obtenidas producto de los diques de guijarros. Es decir, se distingue un control estructural en las valoraciones geotécnicas al observar un aumento significativo en la

calidad geotécnica de las unidades Caliza Superior e Inferior al omitir estos diques del análisis. Por último, se distingue principalmente una valoración media según RMR₈₉ (tabla 8.13, Anexo B), y GSI de 50 a 55 en promedio, generalmente representado por una estructura fracturada a muy fracturada del macizo rocoso y calidades de superficie buenas a regulares (Marinos y Hoek, 2004) en las unidades de roca que no se encuentran afectadas por diques de guijarros.

5.4.2. Zonificación Macizo Rocoso

Mediante la zonificación de las calidades geotécnicas del macizo rocoso de Cantera Normal (figura 4.27), se evidencia un claro control estructural en las valoraciones obtenidas respecto a la calidad del macizo, ya que las zonas con bajas valoraciones (valoración de RMR₈₉ inferior a 40), están principalmente asociadas a la distribución espacial de las estructuras tabulares subverticales de diques de guijarros. Se destaca que gran parte de las mejores valoraciones del macizo rocoso en Cantera Normal, se ubican dentro del dominio estructural C, el que presenta una tipología de bloques equidimensionales a poliédricos. Incluso el dominio estructural D podría haber estado asociado a estas zonas con mejores valoraciones de calidad geotécnica, debido principalmente a los mayores valores de resistencia de la unidad Volcarenita determinados en terreno; sin embargo, la ocurrencia de deslizamientos planares, denotaron que las discontinuidades asociadas a esta unidad no permiten calificar la zona con una calidad geotécnica buena, siendo más bien asociada a una calidad geotécnica media, a excepción del sector septentrional del dominio. Con respecto a las calidades geotécnicas del macizo rocoso en los dominios estructurales A y B, resulta ser más bien similar en ambos dominios, a pesar de presentar comportamientos estructurales diferentes.

CAPÍTULO VI

6. CONCLUSIONES Y RECOMENDACIONES

A partir de las 97 estaciones de mapeo distribuidas en la faena, se obtienen 4 dominios estructurales, definidos como dominios estructurales A, B, C y D (tabla 6.1). Además, se obtuvieron las valoraciones de la calidad geotécnica del macizo rocoso, identificando que el macizo rocoso de Cantera Normal, presenta en general una calidad geotécnica media según la clasificación de Bieniawski (1989), con una valoración promedio de RMR₈₉ de 53, y según el GSI de Marinos y Hoek (2000) se obtiene un valor promedio de 48.

Dominio	Unidad	Orientaciones preferenciales					Tipologías de	DMD	COL	
estructural	Geológica	Estructuras menores				Estructuras mayores		bloques	RMR	GSI
A	Caliza Superior	205/8	35 28		287/65	105/35	185/75	Tabulares	54	49
В	Caliza Superior	194/86	293/64		255/82	99/35	98/88	Tabulares a equidimensionales	54	49
С	Caliza Superior y Caliza Media	190/64	278	3/75	360/74	108/37		Equidimensionales a poliédricos	53	48
D	Caliza Inferior y Volcarenita	207/75		279/71		89/37	238/83	Equidimensionales a poliédricos	56	51

Tabla 6.1. Tabla resumen con las características generales de cada dominio estructural definido en Cantera Normal de Mina Jilguero.

Además, las unidades geológicas presentan diferencias en su comportamiento geomecánico. La unidad volcanosedimentaria definida como Volcarenita, se distingue respecto a las unidades calcáreas Caliza Inferior, Media y Superior, ya que presenta una mejor calidad geotécnica. Sin embargo, esta se ve contrarrestada por las discontinuidades ligadas a la unidad, ya que exhiben bajas rugosidades, rellenos blandos y aberturas considerables. La unidad Caliza Superior, presenta una calidad geotécnica controlada por la mayor cantidad de discontinuidades producto de su tipología de bloques (bloques tabulares con menores espaciamientos) y planos de fisibilidad. Además, las estructuras

mayores controlan la calidad geotécnica del macizo rocoso, estando relacionadas las zonas de mala calidad con la presencia de diques de guijarros y zonas de alteración ferruginosa con texturas brechosas.

Por ende, a pesar de que existen diferencias entre la unidad volcanosedimentaria y las calcáreas, el comportamiento del macizo rocoso es controlado principalmente por los planos de debilidades que presenta, es decir, las discontinuidades del macizo rocoso condicionan el comportamiento geomecánico de las unidades de roca presentes en Cantera Normal. Es relevante por tanto, controlar las estructuras que presenten rellenos blandos, bajas rugosidades, y aberturas considerables, especialmente si son estructuras mayores con buzamientos a favor del frente de explotación; como las características observadas en el dominio estructural D.

Ya que los valores de resistencia de la roca intacta fueron estimados cualitativamente, se propone realizar ensayos de laboratorio uniaxiales, carga puntual y de velocidades de propagación de ondas a muestras obtenidas desde caras libres en la faena, para determinar los parámetros resistentes de las distintas unidades geológicas, así como sus propiedades índices. Además, se recomienda realizar una modificación en el proceso de voladura, comenzando con una disminución en el factor de carga a utilizar en las zonas afectadas por diques de guijarros, con tal de evitar la propagación de daño al macizo rocoso de mala calidad geotécnica. También, se propone la realización de campañas de sondajes, con tal de obtener una mejor densidad de información respecto a las unidades basales estratigráficamente (unidades Caliza Inferior y Volcarenita); así como la obtención de muestras no perturbadas por daños durante el proceso de fragmentación del macizo rocoso por tronadura. Adicionalmente, se recomienda la realización de análisis de estabilidad de taludes, con especial énfasis en la ocurrencia de deslizamientos planares. Por último, a pesar de observarse un macizo rocoso seco, se propone la realización de estudios hidrogeológicos, con tal de estimar la influencia de precipitaciones en la cantera.

7. BIBLIOGRAFÍA

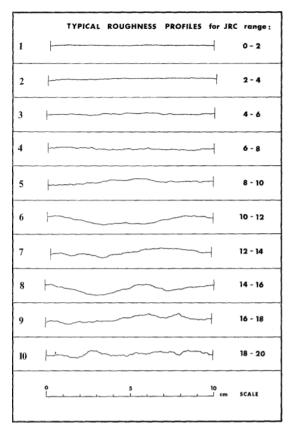
- Amilibia, A., Sàbat, F., McClay, K., Muñoz, J., Roca, E. y Chong, G. (2008). The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko. *Journal of Structural Geology*, *30*(12), 1520-1539. https://doi.org/10.1016/j.jsg.2008.08.005
- Arévalo, C. (1999). The coastal Cordillera-Precordillera boundary in the Copiapó area, northern Chile, and the Structural Setting of the Candelaria Cu-Au Ore Deposit [Tesis de doctorado no publicada]. Kingston University.
- Arévalo, C. (2005). Carta Copiapó, Región de Atacama. Servicio Nacional de Geología y Minería, Carta geológica de Chile, Serie Geología Básica, (91), 1-53, 1 mapa escala 1:100.000.
- Arévalo, C. y Mpodozis, C. (1991). Tectónica del Grupo Chañarcillo: una franja de cabalgamientos con vergencia al oeste en el valle del Río Copiapó, Región de Atacama, Chile. VI Congreso Geológico Chileno, Viña del Mar, Chile.
- Arevalo, C., Grocott, J., Martin, W., Pringle, M., y Taylor, G. (2006). Structural Setting of the Candelaria Fe Oxide Cu-Au Deposit, Chilean Andes (27 30' S). *Economic Geology*, 101(4), 819–841. https://doi.org/10.2113/gsecongeo.101.4.819
- Arévalo, C. y Welkner, D. (2008). Carta Carrizal Bajo-Chacritas, Región de Atacama. *Servicio Nacional de Geología y Minería, Carta geológica de Chile, Serie geología básica*, 1-67, 1 mapa escala 1:100.000.
- Barton, N. (1973). Review of a new shear strength criterion for rock joints. *Engineering Geology*, 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
- Barton, N., Lien, R. y Lunde, J. (1974) Engineering classification of rock masses for the design of tunnel support. *Rock Mechanics*, 6(4), 189–239. https://doi.org/10.1007/BF01239496
- Barton, N., & Choubey, V. (1977). The shear strength of rock joints in theory and practice. *Rock Mechanics Felsmechanik Mécanique Des Roches*, 10(1-2), 1–54. doi:10.1007/bf01261801
- Bieniawski, Z. (1973). Engineering Classification of Jointed Rock Masses. *South African Institution of Civil Engeers*, 15(12), 335-344.
- Bieniawski, Z. (1976). Rock Mass Classification in Rock Engineering. En Bieniawski, Z.T. (Ed.), *Exploration for Rock Engineering* (Vol. 1, 97-106). Balkema, A A Rotterdam Boston.

- Bieniawski, Z. (1989). Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering. Jhon Wiley and Sons.
- Brady, B. y Brown, E. (2004). *Rock Mechanics for underground mining*. (3^a ed.) Springer, 614 p., Dordrecht. https://doi.org/10.1007/978-1-4020-2116-9
- Brown, E. (1981). *Rock characterisation testing and monitoring: ISRM Suggested Methods*. International Society for Rock Mechanics.
- Cahill, T. y Isacks, B. (1992). Seismicity and shape of the subducted Nazca plate. *Journal of Geophysical Research* 97(B12), 17503 17529. doi:10.1029/92JB00493
- Charrier, R., Pinto, L., Rodríguez, P. (2007). Tectonostratographic evolution of the Andean orogen in Chile en Moreno, T., Gibbons, W. (Eds.), *The Geology of Chile* (pp. 21-114). The Geological Society,
- Corvalán, D. (1973). Estratigrafía del Neocomiano Marino de la Región al sur de Copiapó, Provincia de Atacama. *Revista Geológica de Chile*, (1), 13-36. http://dx.doi.org/10.5027/andgeoV1n1-a02
- Cox, K.G. (1988). The Karoo Province en J. Macdougall (Eds.), *Continental flood basalts* (Vol. 3, pp. 239-271). Springer. https://doi.org/10.1007/978-94-015-7805-9_7
- Dunham, R. (1962). Classification of Carbonate Rocks According to Depositional Textures. En W. Ham. (Ed), *Classification of carbonate rocks: A symposium* (108-121) American Association of Petroleoum Geologist Memoir.
- EXSA. S.A. (2013). *Manual Práctico de Voladura*. Centro Tecnológico de Voladura EXSA. https://www.academia.edu/23767654/MANUAL_PRACTICO_DE_VOLADURA_Edici %C3%B3n_especial_La_L%C3%ADnea_m%C3%A1s_Completa_para_Voladura_Das __Komplette_Sprengstoffprogramm_The_Most_Complete_Blasting_Line
- Fossen, H. (2010). Structural Geology. Cambridge University Press, 457 p.
- Gajardo, A. (1976). Prospección y evaluación regional de depósitos de carbonato de calcio en la III región, Atacama. Santiago: Instituto de investigaciones geológicas.
- Garay, C. (1994). Evaluación Geológica del sector Jilguero Norte Inferior, Prospecto Jilguero. Tierra Amarilla: Oficina técnica mina Jilguero. Informe interno.
- Godoy, E., Marquardt, C. y Blanco, N. (2003). Carta Caldera, Región de Atacama. *Servicio Nacional de Geología y Minería, Carta geológica de Chile, Serie Geología Básica,* (76), 1-39, 1 mapa escala 1:100.000.

- González de Vallejo, L., Ferrer, M., Ortuño, L. y Oteo, C. (2004). *Ingeniería Geológica*. Pearson Educación.
- Hofstetter, B., Fuenzalida, H. y Cecioni, G. (1957). *Lexique Stratigraphique International*. Congrès géologique international, París.
- Hudson, J. y Harrison, J. (1995). Engineering Rock Mechanics an introduction to the Principles. Elsevier Ltda.
- Hustrulid, W., McCarter, M. y Van Zyl, D. (2001). *Slope Stability in Surface Mining*. Society for Mining, Metallurgy, and Exploration, Inc. (SME), 439p.
- Hoek, E. (1994). Strength of rock and rock masses. ISRM News J., 2(2), 4-16.
- Hoek, E. y Brown, E. (1980). *Underground Excavations in Rock*. Institution of Mining and Metallurgy, 532 p.
- Hoek, E., Kaiser, P. y Bawden, W. (1995). *Support of Underground Excavations in Hard Rock*. AA Balkema Publishers, 228 p.
- Jordan, T., Isacks, B., Allmendinger, R., Brewer, J., Ramos, V. y Ando, C. (1983). Andean tectonics related to geometry of subducted Nazca plate. *The Geological Society of American Bulletin 94*(3), 341-361. https://doi.org/10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2
- Knight Piésold. (2010). Proyecto de ampliación Mina Jilguero. Estudio de impacto ambiental. Copiapó, Atacama, Chile.
- Marinos, P. y Hoek, E. (2000). GSI: a geologically friendly tool for rock mass strength estimation. International conference in Geotechnical and Geological Engineering, Melbourne.
- Martínez, J. (2003). Geología estructural y dinámica global. Curso de Geol. Estructural (adaptado de apuntes de G. Gutiérrez Alonso). *Universidad de Salamanca, Departamento de Geología*, 429p.
- Martínez, F., Arriagada, C., Peña, M., Del Real, I. y Deckart, K. (2013). The structure of the Chañarcillo Basin: An example of tectonic inversion in the Atacama region, northern Chile. *Journal of South American Earth Sciences*, 42, 1-16. https://doi.org/10.1016/j.jsames.2012.07.001
- Martin, M. y Tannant, D. (2004). A technique for identifying structural domain boundaries at the EKATI Diamond Mine. *Engineering Geology*, 74(3-4), 247–264. https://doi.org/10.1016/j.enggeo.2004.04.001

- McClay, K.R. (1987). The Mapping of Geological Structures. Open University Press, 161 p.
- Moraga, G. (2018). Características geológicas y geotécnicas generales que intervienen en la tronadura y el efecto de daño en el campo lejano en minería de Rajo Abierto [Memoria de pregrado, Universidad de Concepción]. Repositorio Bibliotecas UdeC, 106 p.
- Mourgues, F. (2004). Advances in ammonite biostratigraphy of the marine Atacama basin (Lower Cretaceous), northern Chile, and its relationship with the Neuquén basin, Argentina. *Journal of South American Sciences* 17(1), 3-10. https://doi.org/10.1016/j.jsames.2004.05.002
- Mourgues, F. (2007). La transgression du Crétacé Infériur au Nord du Chili. Biostratigraphie, Paléontologie (Ammonites) Stratigraphie Séquentielle et Tectonique Synsédimentaire [Tesis de doctorado no publicada]. University of Toulouse.
- Mourgues, F., Jaillard, E., Arévalo, C., y Bulot, L. (22-26 de noviembre de 2009). La Cuenca de Chañarcillo (Cretácico Inferior, 26-30°S): Bioestratigrafía, estratigrafía secuencial y tectónica sinsedimentaria. XII Congreso Geológico Chileno, Santiago, Chile.
- Mpodozis, C. y Ramos, V. (2008). Tectónica jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones?. *Revista de la Asociación Geológica Argentina*, 63(4), 481-497. https://revista.geologica.org.ar/raga/article/view/1310
- Nickelsen, R. y Hough, V. (1967). Jointing in the Appalachian plateau of Pennsylvania. *Geological Society of America Bulletin*, 78(5), 609-630. https://doi.org/10.1130/0016-7606(1967)78[609:JITAPO]2.0.CO;2
- Niemeyer, H. (1999). *Apuntes de Geología Estructural Primera Parte: Estructuras Frágiles*. Antofagasta. Chile, 138 p.
- Lazo, C. (2019). Caracterización mineralógica y modelamiento geoquímico de la sílice en la Cantera Normal, Mina Jilguero, Copiapó [Tesis de pregrado no publicada]. Universidad de Atacama, 119 p.
- López Jimeno, C., López Jimeno, E., Ayala, F. y Pernía, J. (2003). *Manual de perforación y voladura de rocas*. Instituto Geológico y Minero de España, 541 p.
- Ochoa, H. (2015). *Análisis estructural de la cuenca cretácica de Chañarcillo (27°-28°S) a partir de la integración de datos geológicos y gravimétricos* [Tesis de pregrado, Universidad de Chile]. Repositorio académico de la Universidad de Chile, 103 p.

- Priest, S., y Hudson, J. (1976). Discontinuity spacings in rock. *International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts*, 13(5), 135-148. https://doi.org/10.1016/0148-9062(76)90818-4
- Ramírez, P. y Alejano, L. (2004). *Mecánica de rocas: Fundamentos e ingeniería de taludes*. Red DESIR, 711 p., Madrid.
- Renne, P., Ernesto, M., Pacca, I., Coe, R., Glen, J., Prévot, M. y Perrin M. (1992). The Age of Paraná Flood Volcanism, Rifting of Gondwanaland, and the Jurassic- Cretaceous Boundary. *Science* 258(5084), 975-979. doi:10.1126/science.258.5084.975
- Segall, P. y Pollard, D. D. (1983). Joint formation in granitic rock of the Sierra Nevada. *Geological Society of America Bulletin*, 94(5), 563-575. https://doi.org/10.1130/0016-7606(1983)94<563:JFIGRO>2.0.CO;2
- Segerstrom, K. (1960). Cuadrángulo Quebrada Paipote, Provincia de Atacama. *Instituto de Investigaciones Geológicas, Carta Geológica de Chile*, 2(1), 1-55, 1 mapa escala 1:50.000.
- Segerstrom, K. (1968). Geología de las Cartas Copiapó y Ojos del Salado. Provincia de Atacama. *Instituto de Investigaciones Geológicas, Carta Geológica de Chile*, (24), 1-58, 1 mapa escala 1:250.000.
- Segerstrom, K. y Parker, R. (1959). Cuadrángulo Cerrillos, Provincia de Atacama. *Instituto de Investigaciones Geológicas, Carta Geológica de Chile, 1*(2), 1-33, 1 mapa escala 1:50.000.
- Segerstrom, K. y Ruiz, C. (1962). Cuadrángulo Copiapó, Provincia de Atacama. *Instituto de Investigaciones Geológicas, Carta Geológica de Chile, 3*(1), 1-115, 1 mapa escala 1:50.000.
- Sepúlveda, P. y Naranjo, J. (1982). Hoja Carrera Pinto, Región de Atacama. *Servicio Nacional de Geología y Minería, Carta Geológica*, (53), 1-60, 1 mapa escala 1:100.000.
- Tapia, F. (2017). Estudio estratigráfico y estructural de la cantera de caliza Mina Jilguero (Región de Atacama) [Tesis de pregrado no publicada]. Universidad de Atacama.
- Taylor, G., Grocott, J., Daswood, B., Gipson, M. y Arévalo, C. (2007). Implications for crustal rotation and tectonic evolution in the Central Andes fore-arc: new paleomagnetic results from the Copiapó region of northern Chile, 26° to 28°S. *Journal of Geophysical Research*, *112*(B01102), 1-22. doi:10.1029/2005JB003950
- Wright, V. (1992). A revised classification of limestones. Sedimentary Geology, 76, 177-185.


Wyllie, D. y Mah, C. (2004). Rock Slope Engineering. (4a ed.). CRC Press, 425 p.

Zhang, L. (2016). Engineering properties of rocks (2ª ed.). Butterworth-Heinemann, 378 p.

Zhou, X., Chen, J., Zhan, J., Song, S. y Cao, C. (2019). Identification of Structural Domains Considering the Combined Effect of Multiple Joint Characteristics. *Quarterly Journal of Engineering Geology and Hydrogeology*, 52, 375-385. https://doi.org/10.1144/qjegh2018-091

8. ANEXOS

8.1. Anexo A: Características de las discontinuidades

Figura 8.1. Perfiles normalizados para obtener el índice de rugosidad o JRC mediante comparadores visuales, con su escala en cm (Barton y Choubey, 1977).

Grado de meteorización	Tipo	Descripción
I	Fresco	No aparecen signos de meteorización.
II	Ligeramente meteorizado	La decoloración indica alteración del material rocoso y de las superficies de discontinuidad. Todo el conjunto rocoso está decolorado por meteorización.
III	Moderadamente meteorizado	Menos de la mitad del macizo rocoso aparece descompuesto y/o transformado en suelo. La roca fresca o decolorada aparece como una estructura continua o como núcleos aislados.

IV	Altamente meteorizado	Más de la mitad del macizo rocoso aparece descompuesto y/o transformado en suelo. La roca fresca o decolorada aparece como una estructura continua o como núcleos aislados.
V	Completamente meteorizado	Todo el macizo rocoso aparece descompuesto y/o transformado en suelo. Se conserva la estructura original del macizo rocoso.
VI	Suelo residual	Todo el macizo rocoso se ha transformado en un suelo. Se ha destruido la estructura del macizo y fábrica del material.

Tabla 8.1. Evaluación del grado de meteorización del macizo rocoso (ISRM, 1981).

N°	Zona o posici ón	Tipo de plano de discont	С	ontini	aidad	(mt))	Espaciado (mt)			Rugosidad RCS		(mm) r			Tipo relleno		Grado alteración		Cond. De agua	Cond. Cara libre	Observaciones							
			>2 0	10 - 20	1	1- 3	1	>2	0.6 -2	0.2- 0.6	0.06- 0.2	<0.0 6	JRC	Descrip		Nada	<0.1	0. 1- 1	1- 5	>5		I	II	III	IV	V			

Figura 8.2. Planilla utilizada para la recolección de información en el mapeo geotécnico de discontinuidades.

Set	Dip	Dip Direction
1	79	193
2	38	87
3	77	114
4	77	230

Tabla 8.2. Orientaciones preferenciales de las estructuras mayores identificadas en faena, obtenidas a partir del *software* Dips 7.0.

8.2. Anexo B: Clasificación del macizo rocoso

Espaciamiento entre discontinuidades (m)	>2	0.6 – 2	0.2 - 0.6	0.06 – 0.2	<0.06
Rating	20	15	10	8	5

Tabla 8.3. Valoración del parámetro de espaciado entre discontinuidades en RMR₈₉ (Bieniawski, 1989).

Medida (m)	>20	10 - 20	3 – 10	1 – 3	<1
Rating	0	1	4	5	6

Tabla 8.4. Valoración del parámetro de persistencia o continuidad de las discontinuidades en RMR₈₉ (Bieniawski, 1989).

Rugosidad	Muy rugoso	Rugoso	Levemente	Suave	Lisa
			rugoso		
Rating	0	1	3	5	6

Tabla 8.5. Valoración del parámetro de rugosidad en RMR₈₉ (Bieniawski, 1989).

RCS (MPa)	<25	25 - 50	50 - 100	100 - 250	>250
Rating	2	4	7	12	15

Tabla 8.6. Valoración del parámetro de resistencia a la compresión simple en RMR₈₉ (Bieniawski, 1989).

Apertura	Nada	< 0.1	0.1 – 1	1 – 5	>5
(mm)					
Rating	0	1	4	5	6

Tabla 8.7. Valoración del parámetro de apertura o abertura en RMR₈₉ (Bieniawski, 1989).

R	Relleno	Sin relleno	Duro <5	Duro >5	Blando <5	Blando >5
	(mm)					
]	Rating	6	4	2	2	0

Tabla 8.8. Valoración del parámetro de relleno en RMR₈₉ (Bieniawski, 1989).

Alteración	Inalterado	Débilmente	Moderadamente	Altamente	Completamente
		alterado	alterado	alterado	alterado
Rating	6	5	3	1	0

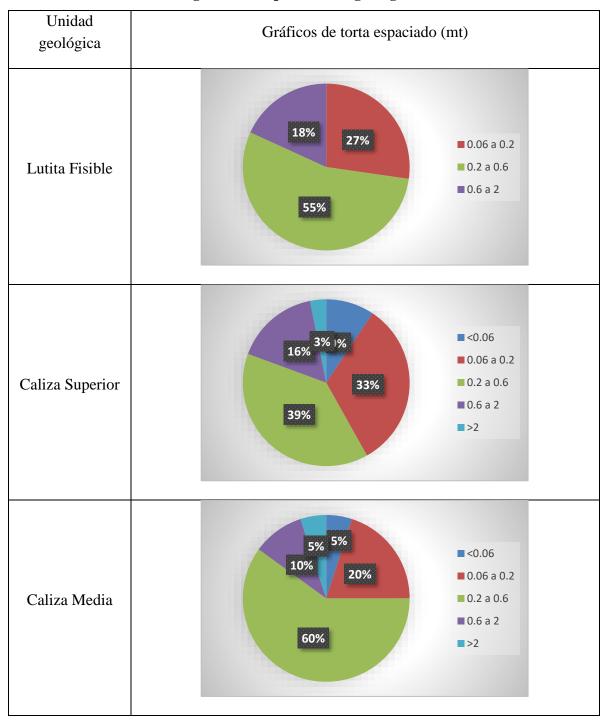
Tabla 8.9. Valoración del parámetro de alteración en RMR₈₉ (Bieniawski, 1989).

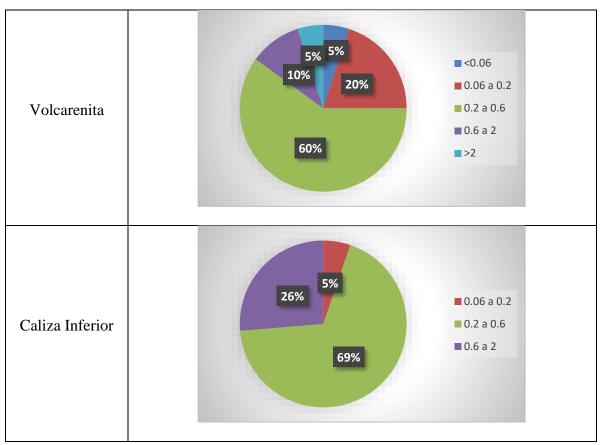
RQD	90 - 100	75 - 90	50 - 75	25 - 50	<25
Rating	20	17	13	8	3

Tabla 8.10. Valoración del parámetro de RQD (*Rock Quality Designation*) en RMR₈₉ (Bieniawski, 1989).

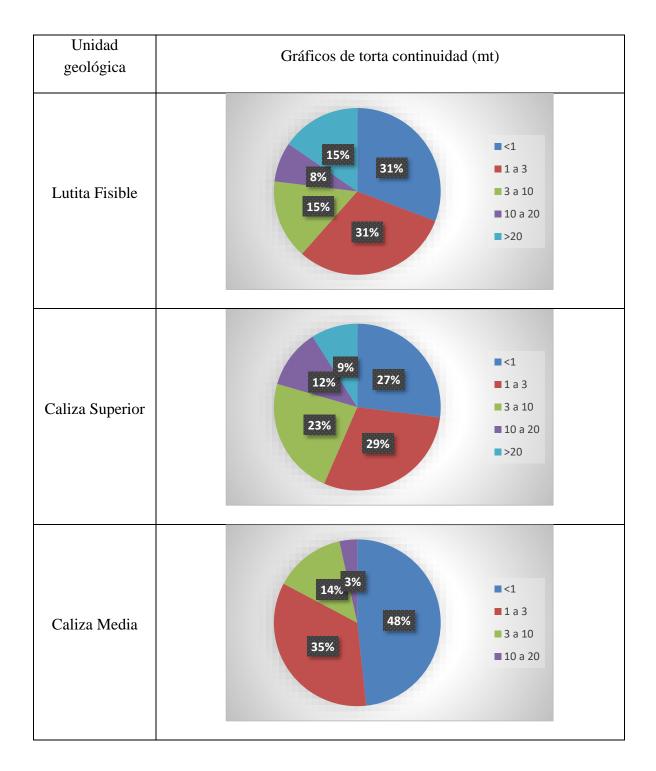
Tipo de roca	Resistenc	cia a compresión simp	le (MPa)
	Mínima	Máxima	Media
Creta	1	2	1.5
Sal	15	29	22
Carbón	13	41	31
Limolita	25	38	32
Esquisto	31	70	43
Pizarra	33	150	70
Lutita	36	172	95
Arenisca	40	179	95
Marga	52	152	99
Mármol	60	140	112
Caliza	69	180	121
Dolomía	83	165	127
Andesita	127	138	128
Granito	153	233	188
Gneiss	159	256	195
Basalto	168	359	252
Cuarcita	200	304	252
Dolerita	227	319	280
Gabro	290	326	298
Taconita	425	475	450
Sílice	587	683	635

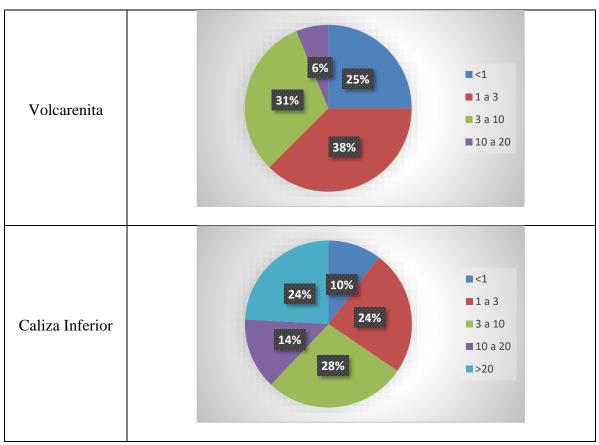
Tabla 8.11. Estimación de las resistencias de rocas (Bieniawski, 1973).

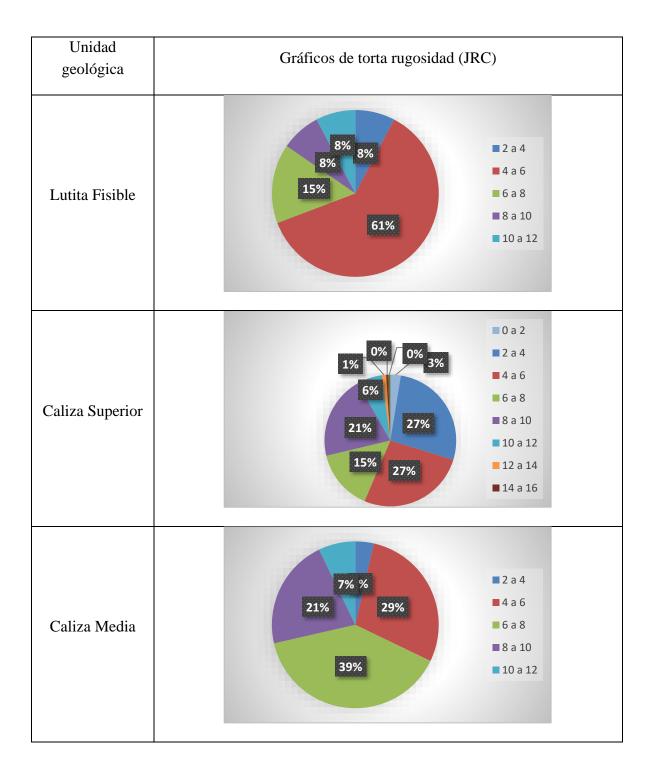

RQD %	Calidad
<25	Muy mala
25 – 50	Mala
50 – 75	Media
75 – 90	Buena
90 – 100	Muy buena

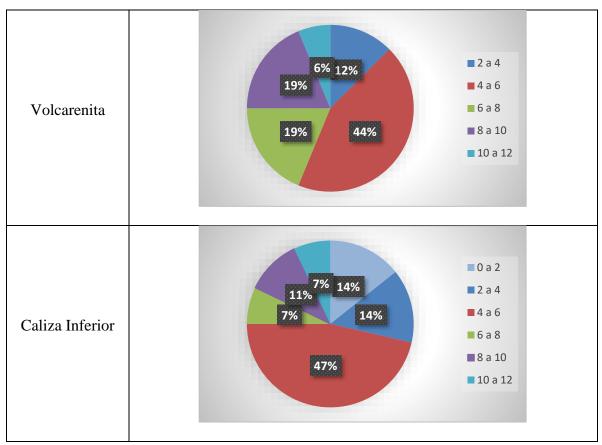

Tabla 8.12. Calidad del macizo rocoso en base al cálculo del RQD (extraído de González de Vallejo et al., 2004).

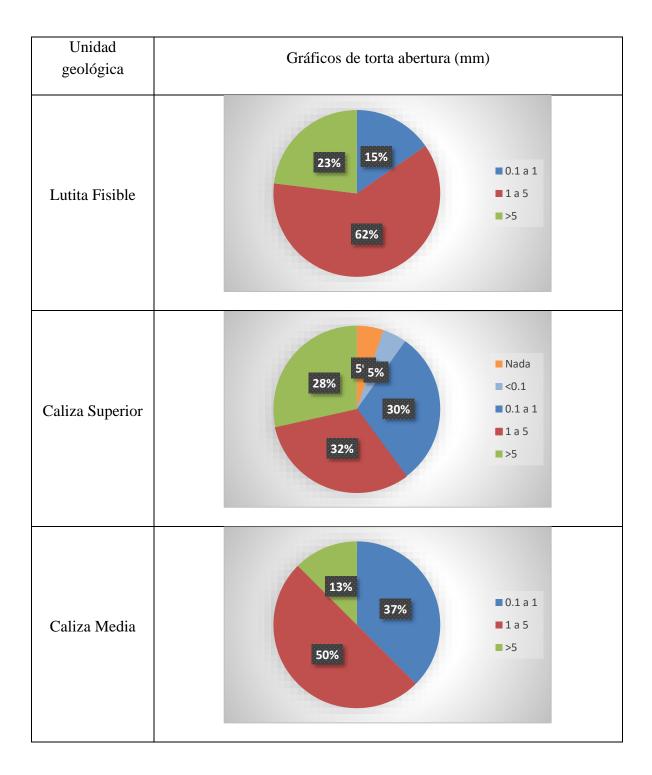
Clase	Calidad	Valoración RMR	Cohesión	Ángulo de rozamiento
I	Muy buena	100-81	>4 kg/cm ²	> 45°
II	Buena	80-61	$3-4 \text{ kg/cm}^2$	35°-45°
III	Media	60-41	$2-3 \text{ kg/cm}^2$	25°-35°
IV	Mala	40-21	$1-2 \text{ kg/cm}^2$	15°-25°
V	Muy mala	20-0	<1 kg/cm ²	<15°

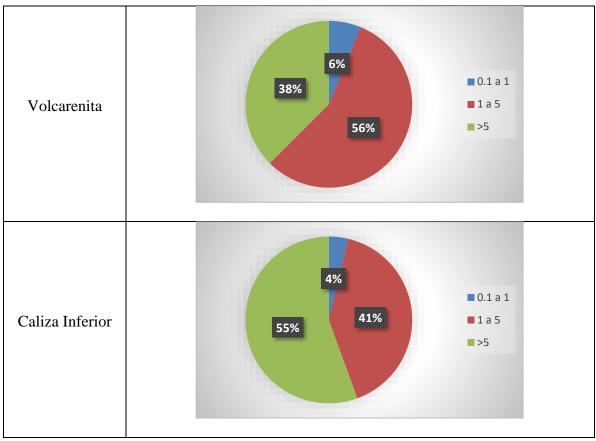

Tabla 8.13. Calidad de macizos rocosos en relación al índice RMR (extraído de González de Vallejo et al., 2004)


8.3. Anexo C: Parámetros geotécnicos por unidad geológica

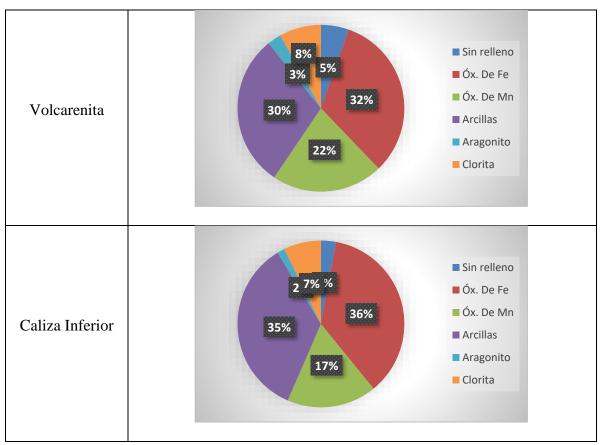


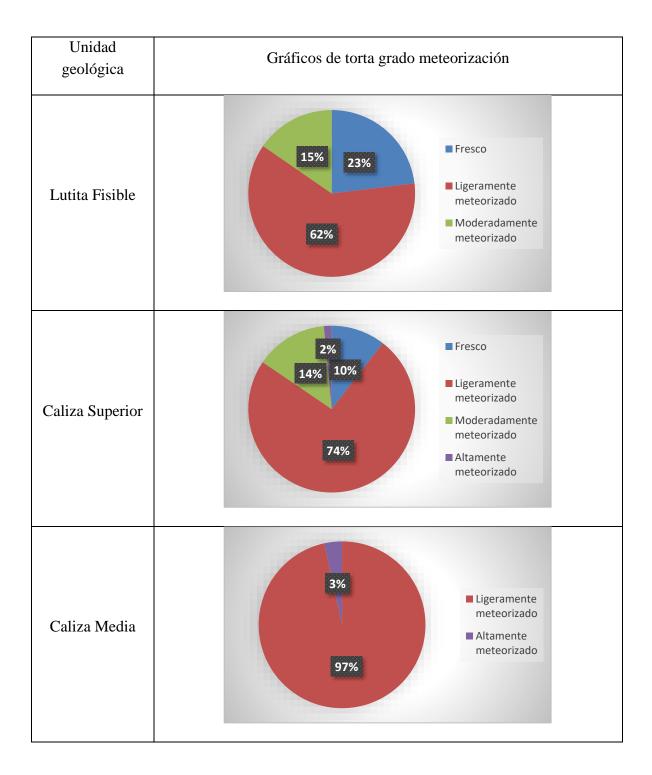

Tabla 8.14. Gráficos de torta del espaciado en metros de las discontinuidades, según cada unidad geológica mapeada.

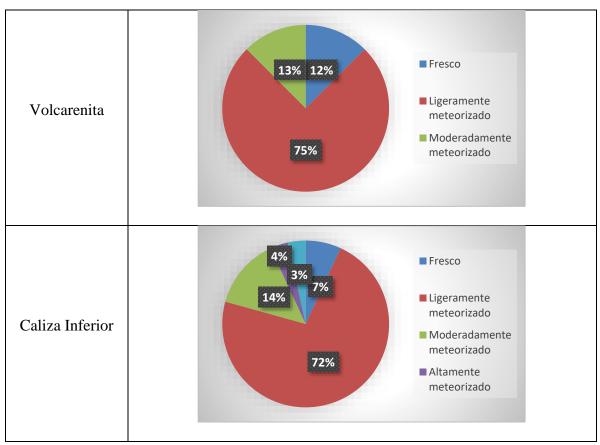



Tabla 8.15. Gráficos de torta de la persistencia en metros de las discontinuidades, según cada unidad geológica mapeada.




Tabla 8.16. Gráficos de torta de la rugosidad de las discontinuidades, según cada unidad geológica.




Tabla 8.17. Gráficos de torta de la apertura de las discontinuidades, según cada unidad geológica.

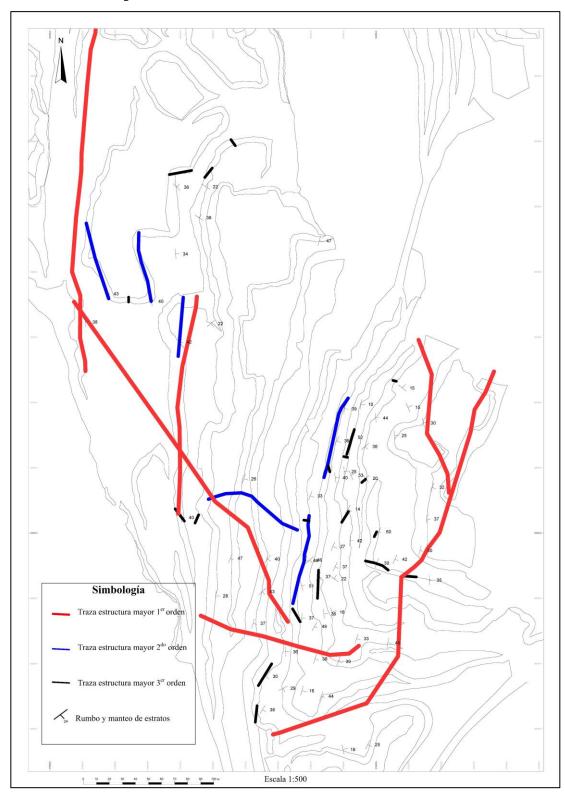

Tabla 8.18. Gráficos de torta del tipo de relleno de las discontinuidades, según cada unidad geológica.

Tabla 8.19. Gráficos de torta del grado de meteorización del macizo rocoso, según cada unidad geológica.

8.4. Anexo D: Mapa Cantera Normal escala 1:500

Figura 8.3. Mapa estructural preliminar Cantera Normal escala 1:500.

8.5. Anexo F: Datos estructurales de Cantera Normal.

Estación o	Tipo	Rumbo	Manteo	DI	Dip	Dip
pto	discont				direction	
C1	0	N8E	40	Е	98	40
C1	1	N75W	78	SW	195	78
C1	1	N11E	80	W	281	80
C1	2	N84E	87	NW	354	87
C2	0	N19E	33	SE	109	33
C2	1	N44E	71	NW	314	71
C2	1	N25W	90	SW	245	90
C2	2	N6E	23	Е	96	23
C3	0	N22W	16	NE	68	16
C3	1	N75W	84	SW	195	84
C3	1	N9E	74	NW	279	74
C3	2	N76W	80	SW	194	80
C4	0	N55W	22	NE	35	22
C4	1	N35E	69	NW	305	69
C4	1	N58W	69	NE	32	69
P5	0	N26E	37	SE	116	37
C5	0	N24E	27	SE	114	27
C5	1	N10W	88	NE	80	88
C5	2	N26W	78	SW	244	78
C6	0	N50E	40	NW	320	40
C6	1	N49W	49	SW	221	49
C6	1	N2E	48	SE	92	48
C6	2	N50E	54	NW	320	54
C7	0	N12W	30	NE	78	30
C7	1	N65E	87	NW	335	87
C7	1	N3E	90	Е	93	90
C8	1	N42W	90	SW	228	90
C9	0	N23W	15	NE	67	15
C9	1	N83W	72	SW	187	72
C9	1	N72W	67	SW	198	67
C9	1	N43E	84	SE	133	84
C10	0	N4W	25	E	86	25
C10	1	N89W	85	N	1	85
C10	1	N45E	90	SE	135	90
C10	0	N9W	40	NE	81	40
C11	1	N71W	82	NE	19	82
C11	1	N20E	53	NW	290	53
C11	2	N12E	50	SE	102	50
C11	-	11141	50) DL	102	50

C11	2	N10E	63	NW	280	63
C12	0	N24W	33	NE	66	33
C12	1	N4W	80	W	266	80
C12	1	N54W	51	SW	216	51
P14	3	N30W	68	SW	240	68
C13	0	N21E	44	SE	111	44
C13	1	N89E	85	N	1	85
C13	1	N15E	36	NW	285	36
C13	2	N15E	49	SE	105	49
C13	0	N16E	16	SE	106	16
C14	1	N61W	75	SW	209	75
C14	1	N11E	68	NW	281	68
C14	0	N18E	38	SE	108	38
C15	1	N76W	84	SW	194	84
C15	1	N13E	52	NW	283	52
C15	4	N85W	89	S	185	89
C15	3	N3E	36	E	93	36
C15	0	N30E	49	SE	120	49
C16	1	N68W	88	SW	202	88
C16	1		46		288	46
	2	N18E		NW	+	
C16	3	N30W	79	SW	240	79
C16		N13E	40	SE	103	40
P19	3	N10E	90	SE	100	90
C17	0	N68W	67	SW	202	67
C17	0	N55E	59	NW	325	59
C17	1	N32E	61	NW	302	61
C17	1	N8E	78	E	98	78
C18	0	N47E	46	SE	137	46
C18	1	N52E	57	NW	322	57
C18	1	N27W	77	SW	243	77
C18	1	N46E	83	NW	316	83
C18	2	N47W	76	SW	223	76
C19	2	N50W	88	SW	220	88
C19	2	N8E	81	Е	98	81
C19	3	N9W	77	W	261	77
C20	0	N20E	33	SE	110	33
C20	1	N5E	75	W	275	75
C20	1	N68W	68	SW	202	68
C20	2	N36W	75	SW	234	75
C21	0	N26E	25	SE	116	25
C21	1	N42W	70	SW	228	70
C21	1	N25E	62	SE	115	62
C21	2	N30E	26	SE	120	26

C22 0 N13W 18 NE 77 18 C22 1 N1E 75 W 271 75 C22 1 N59W 83 SW 211 83 C22 3 N45W 74 SW 225 74 C22 3 N68W 59 SW 202 59 P26 3 N60W 82 SW 210 82 P26 3 N30E 19 SE 120 19 C23 2 N59W 81 SW 211 81 C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67	
C22 1 N59W 83 SW 211 83 C22 3 N45W 74 SW 225 74 C22 3 N68W 59 SW 202 59 P26 3 N60W 82 SW 210 82 P26 3 N30E 19 SE 120 19 C23 2 N59W 81 SW 211 81 C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 <	
C22 3 N45W 74 SW 225 74 C22 3 N68W 59 SW 202 59 P26 3 N60W 82 SW 210 82 P26 3 N30E 19 SE 120 19 C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 <	
C22 3 N68W 59 SW 202 59 P26 3 N60W 82 SW 210 82 P26 3 N30E 19 SE 120 19 C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 <	
P26 3 N60W 82 SW 210 82 P26 3 N30E 19 SE 120 19 C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N39W 88 <	
P26 3 N30E 19 SE 120 19 C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 <	
C23 2 N59W 81 SW 211 81 C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 <	
C23 3 N45E 36 SE 135 36 C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 <	
C24 0 N31E 38 SE 121 38 C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83	
C24 1 N73W 82 SW 197 82 C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 211 88 C27 4 N59W 88	
C24 1 N15W 67 SW 255 67 C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C24 1 N32E 58 NW 302 58 C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C24 2 N61W 79 SW 209 79 C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C24 3 N20E 40 SE 110 40 C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C25 0 N65E 29 SE 155 29 C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C25 1 N21E 83 NW 291 83 C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C25 1 N39W 88 SW 231 88 C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C25 3 N34E 66 SE 124 66 C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C26 0 N53E 28 SE 143 28 C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C26 0 N3W 36 E 87 36 C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C26 4 N58W 83 SW 212 83 C27 4 N59W 88 SW 211 88	
C27 4 N59W 88 SW 211 88	
C27 4 N30E 63 SE 120 63	
[1	
C27 4 N34W 85 NE 56 85	
C28 0 N6W 36 E 84 36	
C28 1 N75W 88 NE 15 88	
C28 1 N20W 74 SW 250 74	
C28 2 N7E 34 E 97 34	
C28 3 N75W 75 SW 195 75	
C29 0 N20E 39 SE 110 39	
C29 1 N50W 86 SW 220 86	
C29 1 N12W 56 SW 258 56	
C29 4 N71E 80 SE 161 80	
C30 3 N30W 54 SW 240 54	
C31 0 N3E 37 E 93 37	
C31 2 N10E 69 W 280 69	
C31 3 N28W 44 NE 62 44	
C32 0 N16W 51 NE 74 51	
C32 1 N12E 62 NW 282 62	
C32 1 N72W 82 SW 198 82	
C32 2 N10E 67 E 100 67	
C32 3 N20E 81 SE 110 81	

C33 3 N82W 68 SW 188 68 C33 3 N13E 84 NW 283 84 C34 0 N15E 46 SE 105 46 C34 1 N4E 69 W 274 69 C34 1 N65E 68 NW 335 68 C34 2 N75E 74 NW 345 74 C34 3 N3W 84 W 267 84 C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE	
C34 0 N15E 46 SE 105 46 C34 1 N4E 69 W 274 69 C34 1 N65E 68 NW 335 68 C34 2 N75E 74 NW 345 74 C34 3 N3W 84 W 267 84 C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W <td></td>	
C34 1 N4E 69 W 274 69 C34 1 N65E 68 NW 335 68 C34 2 N75E 74 NW 345 74 C34 3 N3W 84 W 267 84 C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W <td></td>	
C34 1 N65E 68 NW 335 68 C34 2 N75E 74 NW 345 74 C34 3 N3W 84 W 267 84 C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE </td <td></td>	
C34 2 N75E 74 NW 345 74 C34 3 N3W 84 W 267 84 C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E <td></td>	
C34 3 N3W 84 W 267 84 C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C35 0 N31E 30 SE 121 30 C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C35 1 N25E 87 NW 295 87 C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C35 1 N83E 83 S 173 83 C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C35 2 N11E 28 SE 101 28 C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C35 3 N32E 84 SE 122 84 C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C36 0 N24E 37 SE 114 37 C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C36 1 N10E 70 W 280 70 P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
P41 3 N2E 83 W 272 83 C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C37 4 N15W 33 NE 75 33 C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C38 0 N29E 36 SE 119 36 C39 0 N4E 39 E 94 39	
C39 0 N4E 39 E 94 39	
C39 1 N28E 64 NW 298 64	
C39 1 N87W 82 N 3 82	
C39 3 N10E 40 SE 100 40	
P45 4 N4E 12 E 94 12	
C40 0 N1E 35 E 91 35	
C40 1 N88W 81 N 2 81	
C40 1 N23E 57 NW 293 57	
C40 2 N4E 33 E 94 33	
P47 3 N86W 85 S 184 85	
C41 0 N24E 42 SE 114 42	
C41 1 N69W 84 NE 21 84	
C41 3 N23E 43 NW 293 43	
P49 3 N49W 76 SW 221 76	
C42 0 N21E 30 SE 111 30	
C42 1 N47W 76 NE 43 76	
C42 1 N43E 69 NW 313 69	
C42 2 N18E 17 SW 108 17	
C42 3 N80W 80 SW 190 80	
C43 0 N25E 60 SE 115 60	
C43 1 N22E 22 NW 292 22	
C43 1 N56W 86 SW 214 86	
C43 3 N26E 65 SE 116 65	
C44 0 N39W 20 NE 53 20	
C44 1 N23E 82 NW 293 82	
C44 1 N82W 83 S 188 83	

C44 3 N50E 58 SE 140 58 C45 0 N49E 38 SE 139 38 C45 1 N9W 77 W 261 77 C45 1 N72E 60 NW 342 60 C45 3 N9E 32 E 99 32 C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW <	C11		Naar	1.0	N 733 7	2.47	1.0
C45 0 N49E 38 SE 139 38 C45 1 N9W 77 W 261 77 C45 1 N72E 60 NW 342 60 C45 3 N9E 32 E 99 32 C45 3 N14E 88 SE 104 88 C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW	C44	2	N77E	16	NW	347	16
C45 1 N9W 77 W 261 77 C45 1 N72E 60 NW 342 60 C45 3 N9E 32 E 99 32 C45 3 N14E 88 SE 104 88 C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW 344 88 C48 1 N2E 88 NW		-					
C45 1 N72E 60 NW 342 60 C45 3 N9E 32 E 99 32 C45 3 N14E 88 SE 104 88 C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW 302 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW		+					
C45 3 N9E 32 E 99 32 C45 3 N14E 88 SE 104 88 C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW 302 88 C48 1 N74E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW							
C45 3 N14E 88 SE 104 88 C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW 344 88 C48 1 N74E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>			1				
C46 0 N4W 44 E 86 44 C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE	C45		N9E			99	
C46 1 N86E 69 S 176 69 C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N4IW 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E	C45	3		88	SE	104	88
C47 0 N51W 15 NE 39 15 C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E	C46	0	N4W	44	E	86	44
C47 3 N37W 86 SW 233 86 C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 1 N51W 80 NE 39 80 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E	C46	1	N86E	69	S	176	69
C48 0 N3E 42 E 93 42 C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 1 N51W 80 NE 39 80 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E	C47	0	N51W	15	NE	39	15
C48 1 N41W 59 SW 229 59 C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE </td <td>C47</td> <td>3</td> <td>N37W</td> <td>86</td> <td>SW</td> <td>233</td> <td>86</td>	C47	3	N37W	86	SW	233	86
C48 1 N74E 88 NW 344 88 C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE <td>C48</td> <td>0</td> <td>N3E</td> <td>42</td> <td>Е</td> <td>93</td> <td>42</td>	C48	0	N3E	42	Е	93	42
C48 2 N5E 47 E 95 47 P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE <td>C48</td> <td>1</td> <td>N41W</td> <td>59</td> <td>SW</td> <td>229</td> <td>59</td>	C48	1	N41W	59	SW	229	59
P57 3 N32E 88 NW 302 88 C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE<	C48	1	N74E	88	NW	344	88
C49 0 N33E 14 SE 123 14 C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW <td>C48</td> <td>2</td> <td>N5E</td> <td>47</td> <td>E</td> <td>95</td> <td>47</td>	C48	2	N5E	47	E	95	47
C49 1 N28E 62 NW 298 62 C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N85W 86 N <td>P57</td> <td>3</td> <td>N32E</td> <td>88</td> <td>NW</td> <td>302</td> <td>88</td>	P57	3	N32E	88	NW	302	88
C49 1 N51W 80 NE 39 80 C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 1 N36W 81 SW 234 81 C52 2 N85W 86 N <td>C49</td> <td>0</td> <td>N33E</td> <td>14</td> <td>SE</td> <td>123</td> <td>14</td>	C49	0	N33E	14	SE	123	14
C49 2 N45E 84 SE 135 84 C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N16E 85 NW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N	C49	1	N28E	62	NW	298	62
C50 0 N2W 25 E 88 25 P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW	C49	1	N51W	80	NE	39	80
P60 3 N78W 82 SW 192 82 C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C52 2 N85W 86 N 5 86 C52 2 N78W 60 SW 192 60 C54 3 N67W 68 SW	C49	2	N45E	84	SE	135	84
C51 0 N17E 52 SE 107 52 C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N16E 85 NW 234 81 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N11E 70 NW <td>C50</td> <td>0</td> <td>N2W</td> <td>25</td> <td>Е</td> <td>88</td> <td>25</td>	C50	0	N2W	25	Е	88	25
C51 1 N24E 30 NW 294 30 C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE <td>P60</td> <td>3</td> <td>N78W</td> <td>82</td> <td>SW</td> <td>192</td> <td>82</td>	P60	3	N78W	82	SW	192	82
C51 1 N69W 89 NE 21 89 C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE	C51	0	N17E	52	SE	107	52
C51 3 N17E 68 SE 107 68 C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E	C51	1	N24E	30	NW	294	30
C52 0 N9E 10 E 99 10 C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W	C51	1	N69W	89	NE	21	89
C52 1 N16E 85 NW 286 85 C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S	C51	3	N17E	68	SE	107	68
C52 1 N36W 81 SW 234 81 C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C52	0	N9E	10	Е	99	10
C52 2 N23W 22 NE 67 22 C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C52	1	N16E	85	NW	286	85
C52 2 N85W 86 N 5 86 C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C52	1	N36W	81	SW	234	81
C53 2 N78W 60 SW 192 60 C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C52	2	N23W	22	NE	67	22
C54 3 N67W 68 SW 203 68 C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C52	2	N85W	86	N	5	86
C55 1 N54W 72 SW 216 72 C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C53	2	N78W	60	SW	192	60
C55 1 N11E 70 NW 281 70 C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C54	3	N67W	68	SW	203	68
C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C55	1	N54W	72	SW	216	72
C55 2 N17W 35 NE 73 35 C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C55	1	N11E	70	NW	281	70
C55 3 N6W 38 NE 84 38 C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C55	2		35	NE	73	35
C56 0 N5W 43 E 85 43 C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C55	3	N6W	38	NE	84	38
C56 1 N4E 59 W 274 59 C56 1 N88W 69 S 182 69	C56	0	N5W	43	Е	85	43
	C56	1	N4E	59	W	274	59
C56 3 N6W 28 NF 84 28	C56	1	N88W	69	S	182	69
COO	C56	3	N6W	28	NE	84	28
P67 3 N4W 55 E 86 55		3	N4W	55	Е	86	55
C57 1 N6E 56 NW 277 56				56	NW	277	56

C57	2	N9E	48	SE	99	48
P69	3	N11W	55	NE NE	79	55
P70	0	N15W	40	NE	75	40
C58	3	N23E	59	NW	293	59
C58	3	N14W	34		76	34
C59	0	-	+	NE E	1	34
		N4W	34		86	
C59	1	NS	72	W	270	72
C59	1	N76W	69	SW	194	69
C59	2	N14E	86	SE	104	86
C59	0	N20W	23	NE	70	23
C60	1	N77W	72	SW	193	72
C60	1	N73W	86	NE	17	86
C61	0	N7W	38	NE	83	38
C61	1	N34W	81	SW	236	81
C61	1	N47E	65	SE	137	65
C61	3	N30W	83	SW	240	83
P75	4	N29W	86	SW	241	86
C62	1	N62W	63	SW	208	63
C64	0	N6E	28	SE	96	28
C64	1	N8W	65	SW	262	65
C65	0	N22E	47	SE	112	47
C67	2	N28E	78	SE	118	78
C67	2	N51E	44	SE	141	44
P86	2	N76W	55	SW	194	55
C68	1	N10E	40	SE	100	40
C68	2	N84E	68	SE	174	68
P90	4	N24E	45	SE	114	45
P91	3	N27E	37	SE	117	37
C70	0	N18E	26	SE	108	26
C70	1	N20E	69	NW	290	69
C70	2	N86E	8	N	356	8
C70	2	N18E	49	SE	108	49
C71	1	N9W	89	NE	81	89
C71	1	N87W	76	N	3	76
C72	1	N69W	84	SW	201	84
C73	1	N18E	56	SE	108	56
C73	1	N42E	39	NW	312	39
C74	1	N88E	42	S	178	42
C74	1	N80W	46	NE	10	46
P103	3	N12E	25	SE	102	25
C75	0	N16E	47	SE	106	47
C75	1	N84W	72	NE	6	72
C75	1	N12E	69	SW	282	69
C13	1	NIZE	03	D 44	202	U 9

C76 1 N88W 75 N 2 75 C76 1 N40E 47 NW 310 47 C76 2 N15E 26 NW 285 26 C76 3 N30E 68 SE 120 68 C77 0 N46W 36 NE 44 36 C77 1 N10E 75 NW 280 75 C77 1 N55W 63 SW 215 63 P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 88 NW 288 86 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 S	C76	1	N58W	88	SW	212	88
C76 1 N40E 47 NW 310 47 C76 2 N15E 26 NW 285 26 C76 3 N30E 68 SE 120 68 C77 0 N46W 36 NE 44 36 C77 1 N10E 75 NW 280 75 C77 1 N15SW 63 SW 215 63 P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N18W 56 NW 288 56 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 <			1				
C76 2 N15E 26 NW 285 26 C76 3 N30E 68 SE 120 68 C77 0 N46W 36 NE 44 36 C77 1 N10E 75 NW 280 75 C77 1 N10E 75 NW 280 75 C77 1 N15E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 1 N80W 63 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
C76 3 N30E 68 SE 120 68 C77 0 N46W 36 NE 44 36 C77 1 N10E 75 NW 280 75 C77 1 N55W 63 SW 215 63 P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N10E 87 SE 100 87 C81 0 N57W 22 N					1	-	
C77 0 N46W 36 NE 44 36 C77 1 N10E 75 NW 280 75 C77 1 N55W 63 SW 215 63 P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 88 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 0 N57W 22 NE			1			+	
C77 1 N10E 75 NW 280 75 C77 1 N55W 63 SW 215 63 P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N73W 76 S							
C77 1 N55W 63 SW 215 63 P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 N							
P108 3 N18E 72 SE 108 72 C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 N						-	
C78 2 N18W 88 NW 288 88 C79 2 N18W 56 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE<						-	
C79 2 N18W 56 NW 288 56 C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW </td <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>•</td> <td></td>			1		1	•	
C79 2 N89W 31 N 1 31 C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 2 N6E 88 NW 276 88 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE<			1		1	-	
C79 2 N23E 24 NW 293 24 C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N75E 87 NW 345 87 C83 1 N36W 86 E			1	1	1		
C80 0 N56W 38 NE 34 38 C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td>			1			-	
C80 1 N10E 87 SE 100 87 C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE<			1		ł	-	
C80 1 N80W 63 SW 190 63 C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW<						-	
C81 0 N57W 22 NE 33 22 C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C85 0 N47E 43 SE<			1		1	-	
C81 1 N30E 88 NW 300 88 C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE </td <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td>•</td> <td></td>					ł	•	
C81 1 N78W 76 SW 192 76 P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW </td <td>C81</td> <td>0</td> <td>N57W</td> <td></td> <td>1</td> <td>33</td> <td></td>	C81	0	N57W		1	33	
P113 2 N6E 88 NW 276 88 P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE<	C81	1	N30E	88		300	88
P113 3 N9W 30 NE 81 30 C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 1 N36W 78 NE </td <td>C81</td> <td>1</td> <td>N78W</td> <td>76</td> <td>SW</td> <td>192</td> <td>76</td>	C81	1	N78W	76	SW	192	76
C82 3 N36W 78 NE 54 78 C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 1 N36W 78 NE 54 78 C86 1 N76W 59 SW </td <td>P113</td> <td></td> <td>N6E</td> <td>88</td> <td>NW</td> <td>276</td> <td>88</td>	P113		N6E	88	NW	276	88
C83 1 N75E 87 NW 345 87 C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW<	P113	3	N9W	30	NE	81	30
C83 1 N3W 86 E 87 86 P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N76W 78 NE 54 78 C87 1 N76W 59 SW<	C82	3	N36W	78	NE	54	78
P118 2 N86W 66 S 184 66 C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N26W 70 SW 244 70 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C87 1 N76W 59	C83	1	N75E	87	NW	345	87
C84 0 N16E 37 SE 106 37 C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34	C83	1	N3W	86	Е	87	86
C84 1 N82W 86 SW 188 86 C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84	P118	2	N86W	66	S	184	66
C84 1 N4E 58 W 274 58 C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N76W 78 NE 54 78 C86 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44	C84	0	N16E	37	SE	106	37
C85 0 N47E 43 SE 137 43 C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 <t< td=""><td>C84</td><td>1</td><td>N82W</td><td>86</td><td>SW</td><td>188</td><td>86</td></t<>	C84	1	N82W	86	SW	188	86
C85 1 N26W 70 SW 244 70 C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 <td< td=""><td>C84</td><td>1</td><td>N4E</td><td>58</td><td>W</td><td>274</td><td>58</td></td<>	C84	1	N4E	58	W	274	58
C85 1 N80E 68 NW 350 68 P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C85	0	N47E	43	SE	137	43
P122 4 N19W 82 NE 71 82 C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C85	1	N26W	70	SW	244	70
C86 0 N35E 40 SE 125 40 C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C85	1	N80E	68	NW	350	68
C86 1 N36W 78 NE 54 78 C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	P122	4	N19W	82	NE	71	82
C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C86	0	N35E	40	SE	125	40
C86 1 N7E 48 NW 277 48 C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C86	1	N36W	78	NE	54	78
C87 1 N76W 59 SW 194 59 P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C86	1	N7E	48	NW	277	48
P128 4 N26E 34 SE 116 34 C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37	C87	1	1	59	SW	194	59
C89 0 N14E 50 SE 104 50 C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37						-	34
C89 1 N79W 84 SW 191 84 C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37						+	
C89 1 N20E 44 NW 290 44 C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37							
C89 2 N57W 88 SW 213 88 C90 0 N3E 37 E 93 37			1		1	+	
C90 0 N3E 37 E 93 37			1		1	+	
					1	-	
C90	C90	1	N30E	64	NW	300	64

C90	1	N46W	71	SW	224	71
C91	0	N24E	32	SE	114	32
C91	1	N32W	67	SW	238	67
C91	1	N38E	74	NW	308	74
C91	2	N54W	76	SW	216	76
P132	4	N69W	81	SW	201	81
C94	0	N4E	40	Е	94	40
C94	1	N65W	67	SW	205	67
C94	1	N16E	70	NW	286	70
C94	2	N40E	40	NW	310	40
C94	3	N37W	80	SW	233	80
P139	4	N3E	32	Е	93	32
C95	4	N10E	33	SE	100	33
P141	4	N12E	39	SE	102	39
P141	3	N17E	37	SE	107	37
C96	0	N14E	42	SE	104	42
C96	1	N50W	81	SW	220	81
C96	1	N10E	70	NW	280	70
C96	4	N4E	32	Е	94	32
C97	0	N50E	22	SE	140	22
C97	1	N31W	85	SW	239	85
C97	1	N51E	81	NW	321	81
C97	4	N3E	38	Е	93	38

Tabla 8.20. Base de datos estructurales recolectados en Cantera Normal. Las notaciones se refieren a planos de estratificaciones (0), sets de diaclasas (1), trazas de fallas menores (2), trazas de fallas mayores de 3er orden (3) y trazas de estructuras de 1er y 2do orden (4).